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Abstract

In this paper, we will present a unified formulation of discontinuous Galerkin method (DGM) for Maxwell’s
equations in linear dispersive and lossy materials of Debye type and in the artificial perfectly matched layer (PML)
regions. An auxiliary differential equation (ADE) method is used to handle the frequency-dependent constitutive re-
lations with the help of auxiliary polarization currents in the computational and PML regions. The numerical flux for
the dispersive lossy Maxwell’s equations with the auxiliary polarization current variables is derived. Various numerical
results are provided to validate the proposed formulation.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

There has been active recent research in the development of discontinuous Galerkin methods (DGMs)
for handling material interfaces arising from electromagnetic scattering [1-4]. The main advantages of the
DGMs are the high order accuracy and parallel implementation as piecewise continuous approximation
spaces are used to represent electromagnetic fields. The material interfaces are conformingly approximated
in the underlying mesh triangulation of the solution domain. There are two approaches in implementing the
DGMs, namely, the A-version and the p-version. Similar to the finite element methods [5], the A-version
allows the mesh size to be decreased to achieve convergence at an order of the employed polynomial basis,
resulting in a finite order method. The alternative p-version allows the order of the polynomials to be
increased with the sizes of the elements kept at an initial triangulation. It will be shown in this paper, even
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for discontinuous fields, exponential convergence with respect to the order of the basis functions can be
obtained for DGM. A hybrid s—p version can also be considered [4].

An important aspect of time domain calculation of Maxwell’s equations is the treatment of boundary
conditions on the truncated computational domains. There are two popular ways of boundary treatment.
The first kind is to define some kind of boundary operators (either differential or integral) so that no reflection
occurs on the boundary, thus so-called non-reflective or absorbing boundary conditions [6—8]. The other kind
of boundary treatment is to create a region of artificial absorbing layer around the computational domain so
that waves, entering the artificial region transparently, will be attenuated within the region and the reflection
back into the computational domain will be negligible and controllable. The second approach was initiated
by Berenger’s PML [9] and has attracted much research along this direction including the anitropic (Uniaxial)
PML region [10,11]. The PML treatment of Berenger relies on the split field formulation of the Maxwell’s
equations in the PML region and has been shown in [12] to be only weakly stable. The uniaxial PML (UPML)
proposed by Sacks and Ziolkowski does not require the splitting of the Maxwell’s fields and is accomplished
with the help of artificial polarization currents in the case of dispersive media. The resulting differential
equations maintain the strong well-posedness of the original Maxwell’s system [12].

In this paper, we will present a unified formulation of DGMs for the Maxwell’s equations in both the
computational and PML regions. To handle the frequency-dependent relation between the polarization
P, M and the fields E, H, we use the auxiliary differential equation (ADE) method [13] to avoid the con-
volution-type constitutive relation in the time domain. The ADE method will be applicable in both the
computational and PML regions. Several other issues will also be discussed such as the conservative form
of the Maxwell’s equations in both regions, definition of the polarization currents for the Debye media, and
the construction of numerical fluxes based on the Riemann solutions.

The rest of the paper will be organized as follows. In Section 2, we introduce the Maxwell’s equations in
a linear dispersive and lossy media. A unified formulation of the Maxwell’s equations with the added
polarization currents will be introduced for both the computational and PML regions. The details of the
derivation is provided in Appendix A. In Section 3, we give the discontinuous Galerkin discretization of the
Maxwell’s equations and numerical fluxes based on the Riemann solution of the Maxwell’s equations with
the added polarization current variables. In Section 4, numerical examples will be given to first verify the
accuracy of the UPML boundary treatment for the DGM, then to validate the exponential convergence of
the DGMs with the UPML boundary conditions, and finally to simulate the scattering of dispersive objects
in lossy Debye media. A conclusion is given in Section 5 while appendices are included to give various
technical derivations in the paper.

2. Maxwell’s equations in Debye dispersive materials and PML regions

Maxwell’s equations in MKS units are given in the general form as follows:

oD
oB

where E and H are the macroscopic electric and magnetic fields, D and B are the electric displacement and
magnetic induction fields, respectively, and J the current. The current, J, is typically assumed to be related
to the electric field, E, through Ohm’s law, J = oE, where ¢ measures the finite conductivity of the medium.

In order to solve Maxwell’s equations, we need the constitutive equations that relate D to E and B to H,
respectively
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D = g6 E + P, (2.3)

B = pop, . JH+M, (24)

where ¢ and p, are the electric permittivity and the magnetic permeability of free space, ¢, and yu, . are
the relative electric permittivity and the relative magnetic permeability of the medium at infinite frequency,
and P and M are the electric polarization and the magnetic polarization, respectively.

In general, the components P; of the electric polarization P are related to the components E; of the
electric field E via a power series in the frequency domain (indicated by °) as in Bloembergen [15]

7m§:%j E-+%§:Mk VEE, + O(E®). (2.5)

In linear and isotropic medium, the above relation is terminated at the first term to give
P = cy(0)E, (2.6)

where y(w) is the electric susceptibility of the medium in frequency domain.

Here we assume that the magnetic polarization is 0, i.e., no magnetic effects are included in the treatment
given here. The generalization of the relation between the magnetic polarization M and the magnetic field H
can be made similarly.

For a single-pole Debye medium, the electric susceptibility in frequency domain can be expressed as

€rs — 6r,oc
A@_1+mr’ (2.7)
where ¢, is the static zero-frequency relative electric permittivity, and t is the pole relation time.

The non-dimensionalized Maxwell’s equations for linear dispersive and lossy materials and the artificial
PML regions can be given in a unified form as follows. New auxiliary polarization currents P, Qs are
introduced to decouple the frequency-dependent constitutive relations (2.3) and (2.6) (details of derivations
are given in Appendices A and B). The non-dimensionalized Maxwell’s equations for TM waves in dis-
persive media and in the UPML region are given as

OE. 0H, O0H, €rs — €roo
100 A, - r,oo\Vx —_ Ez 132 I:)z - 1_72 - I:)z 9
‘o Ty Ox dy 0+ erool0x +0y) + T +E 3 4

OH, OFE.
., — - X H)c X3
lur at ay :ur(gy o ) + Q
OH, OF,
H,
My ot ox (0x — 0,)H, + O,
oP,
a[.’l = _6r4ooo-xa}'Ez>
oP., 1 €r,00
2o __p,4 T fxp 2.8
ot T 7 + 72 (28)
P, 1 s — Croo rs — Crooo X
6273:__132.3_6_’ €, Pzi1+(€‘ €r00) (0 +0y)Ez,
ot T 7 €ro0T T
oP.
6214 = _iPz,l + O-(O-x + O-y)Em
00,
a% anx + ,Ler'X( ax>Hx7
aQ}

at O-YQV + :“ro-y( GV)I—I)’7
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where E. is the z-component of the non-dimensionalized electric field, 4, and H, are the x- and y-component
of the non-dimensionalized magnetic field, respectively. Again, € ., is the relative electric permittivity at
infinite frequency, p, is the relative magnetic permeability. ¢, is the static zero-frequency relative electric
permittivity, 7 is the non-dimensionalized pole relaxation time, P.;, O, and O, are auxiliary variables in-
troduced by the PML, P,, is introduced by the medium dispersion, P, is introduced by the medium dis-
persion and the PML, P.4 is introduced by the medium loss and the PML. ¢ is the non-dimensionalized
relative electric conductivity, o, and o, are the parameters for the PML. In the case that o, = g, = 0, the
above equations reduce to the original Maxwell’s equations in the physical dispersive region (2.1) and (2.2).
Similar equations can be derived for the TE waves and will not be repeated here.
Setting U = (& ooE:, . Hy, . Hy, Poy, Pon, Pos, Poa, O, Qy)T, the conservation form for the system is

Y ivo(av) =s. 29)
where A and S will be given later. Note that the 4th-9th equations in Eq. (2.8) are all ordinary differential
equations, we can rewrite the conservation system as

ouWw

5tV AUy =sM, (2.10)
@
@lét =80, (2.11)

where UV = (6,0, . Hy, i, H,)", U? = (P.y, P.a, P.3, Poy, 0,,0,) ", U = (UD, UP)T, S = (S ST and
A = (4,,4,) and

0 0 _1/:u'r 0 l/lur 0
A= 0o 0 0 |, 4=(1/ax 0 0
1fee 00 0 0 0
And A is given as
A = (;Ixa*’ay)v
where

- A 03 6 - A Y 03 6
A, = ¥ ), A4, = ) o).
(06><3 06x6> ! (06><3 06><6
Here 0,,, denotes zero matrix with n rows and m columns. The source terms SV and S represent body
forces, e.g., currents,

- [6 + 6r,oo(o-)c + Uy) + g]Ez + I)ZA,l + })Z,Z - })z,_’a - })z,4
s — — (0, — 0,)H, + O, ) (2.12)
— (0 — Uy)Hy + 0,

_6r‘oco-x0-yEz
1 €rs —€rc
-1 ZA,2_|_ ‘szerz
_ le} _ GrsTéro Pz,l _|_ (fr.s—er,oc)(o'x+0')’>E

S? — PEs Eroot T =] (2.13)
— %P1+ (0o +0,)E;

_onx + ,LtrO'x(O'y - O-X)Hx
—0,0, + 1, 0,(0, — 0,)H,
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3. DGMs for Maxwell’s equations
Let 7, be a discretization of the solution domain Q. For each element K € 7, €, and p, are assumed

constant on each element. We denote a finite-dimensional space of smooth functions defined on the element
K by 2(K). This space will be used to approximate the variable U. Set

V= {ve L' (Q)|v|, € 2(K) VK € T} (3.1)
and
V2=V x Vyx - x V. (3.2)
N——

9

The DGM space discretization of the hyperbolic system for U can be written as follows: Find U € V}) such
that, for all v, € V},

oum
/ ( U —SWy, — AUW . vy, dx+/ he (U, U - fge, ds = 0, (3.3)
K oK

ou®
/ ( gt vy — S<2)Uh> dx =0, (3.4)
K

where fix = (ny,n,) is the outward unit normal to 0K, U™ and UMD are defined as

U#(x) = lim U (x + o),

and the numerical flux hg (U~ U is an approximation to i - AU ox on the faces of the element K,
and

he(UY, UY) = g - AUV, (3.5)

3.1. Numerical flux hg(U"~ U

From Egs. (3.3) and (3.4), we can see that the numerical flux is only needed for U, but not for U®
the DGM, the computational domain Q is composed of cells, or elements, K;. On K;, U is approximated by
a linear combination of the basis functions and the approximation is not required to be continuous across
0K;. Therefore, for conservation, we have to replace faKi AUY . ads with a numerical flux

/ AUl / 4y g, (3.6)
oK, ecoKj,e=TI;

where the sum is taken over all the edges e of the cell, and 0K; = | JI';;, where I';; = K; N K, and # is the
outward unit normal vector to K;. Note that the triangulation is assumed to satisfy the properties of finite-
element triangulation: the K are non-overlapping sets and, if e is a given edge of 0K}, there exists a unique

K; such that e = K; UK. UW7 is the field value local to the element K; and U is the field value local from
the neighbour element K;.

The flux h(U": U(l)‘+) is defined by solving exactly or approximately a one-dimensional Riemann
problem, in the direction 72 normal to the edge e = I';;. For this purpose, we define new variables { (normal)
and 7 (tangential) along the element edge
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{=nx+ny=x-n, T=-nx+ny=x-n, (3.7)
where n = (n,,n,), n* = (—n,,n,) and x = (x,y). The system (2.10) and (2.11) is transformed into

ou  d Nl d

o T -a0W) +5.(A -ty =80, (3.8)
ag” =S@, (3.9)
where
U0 =000, p(E )0, SV ) =SV (0, ()., 1=1,2 (3.10)
and
A-n=Amn, +An,, A =—An,+An,. (3.11)

The following shorthand notations are introduced
U= (00,09, §=(S§M, 8T,

Now, if UV is constant to each side of the line { = 0, the associated Cauchy problem reduces to the one-
dimensional Riemann problem along the direction 7,

0 -~ 0 - ~
ZUW 4+ (AU = 1) 3.12
6tU + aC( nU'") =S", (3.12)
Ogw_go (3.13)
ot ’
~ U, (<0

_Ju, : 3.14
oo -{g. i (3.14)

and the flux h(UW~, U"") at the point is defined as (A - ﬁﬁ(l))hzo. Here (A -ﬁﬁ(l))hzo means
. A0M — i . qau® — 1 i .UM

(A0 = lim lim (/_\ iU (C,t)) lim lim (A AU (¢, t)). (3.15)

Only if the second equality in Eq. (3.15) holds, the definition of the numerical flux makes sense. In fact,
from the Rankine-Hugoniot condition at the discontinuous line { = 0, we can see that the second equality
in Eq. (3.15) should hold.

Assume that the parameters €., €/, 1., and y," are constant on each element and A - i is discontinuous
across { =0,

. [AT-a, (<0,
A~n{A+_ﬁ (3.16)

0 m/id =/ gk
AF = | nJer, 0 0 . (3.17)
—ne/el 0 0
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So the numerical flux hg (U~ UM") can be written as follows:

h(U—, UD) = lim (A’U”(O’,t)) = lim (Nﬁ“)(ott)), (3.18)
t—0+ t—0t
where
v 0,1 = lim o), U0 = lim U (). (3.19)

The numerical flux hg (U~ UM) for the Maxwell’s equations can be shown as follows:

B iy ¥ (ZH+ig xE)” +(ZH—hig xE)*

by = ~7° 7 (3.20)

e X (YE—iig xH) ™ +(YE4iig xH) "
K Y=+Y T

where Z* and Y= are the local impedance and admittance, respectively, and defined as

1 u
+ T

For TM, wave, the numerical flux is given as (with details given in Appendix C)

[zttt -] [zt -yt )+E]

Z:+ZJr .
hk(lj(l),f7 U(l)+) — n, [YE;*(anv*”ny)Il +£{E:+<”va*”yHX)] . (321)
—+
[YE:~(nHy—nyH) |+ [VE-+ (neHy—ny )|
M Y- +Y+

From the duality of the TE. and TM., cases, the numerical flux for the TE, case can be obtained by re-
placing E. with H., replacing H, by —FE,, and replacing H, by —E,, replacing Z by Y and replacing ¥ by Z in
Eq. (3.21),

[¥ (0 Ey—nyE)+H] +[¥ (0 Ey—nyE)—H]

Y11+
hK(U“)”,U“)‘*): . (281 + By —nyB)| +[28.— By -nyE)] | (3.22)
y Z+z"
[ZH.+(nEy—nyEy)| +[ZH.~ (nEy—nyEy)|
x s

where UV = (My o2, & E, ¢E,)".
3.2. Mapping between the standard reference element and the physical element

We start by assuming that the computational domain, €, is decomposed into quadrilateral and trian-
gular elements with straight or curved sides, as illustrated in Figs. 1 and 2.

The sides of the elements are not required be straight, but for most computational problems, the vast
majority of the elements will have straight sides. We shall name the coordinates in the standard element / as
& = (&,n) while the coordinates in the physical element D as x = (x, y).

To relate operations in D to those in I, we need to construct a smooth and invertible mapping ¥ : D — [
that uniquely relates the physical elements and the standard reference elements. For curved triangles as in
Fig. 3, a blending function can be constructed for the mapping [5]. In the case of Fig. 1, the mapping is
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Viv N Vi Vs
A D
I 1 Em=F(xy) \y
X
xy)=y"' Emn)
&
1
\7 \77 V,
] v,

Fig. 1. Mapping between the quadrilateral D and the standard quadrilateral 1.

n
Vi
v D
Em)=Px.y) 3
I = y
xy)=v"&n) X

Vo

%\7|<—1ﬁvill & V1

Fig. 2. Mapping between the curved triangle D and the standard triangle I.

QB Source at

— (50,25)
Qr /

Fig. 3. Computational domains for testing reflectivity of boundary conditions.

Test Boundary

(1=90-n,  (A+(1-n)  (+a1+n) 1=+,

X = ‘l’(ﬁ) = 4 v + 4 [25) 4 3 4 4, (323)

where v, vy, v3, and v, are the coordinates of the vertexes V;, V3, V3, and V;, respectively.
Once the mapping ¥(€) has been established, we can use it to compute the curvilinear metric of the

transformation by
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a_x%_ X¢ xﬂ)(éx éy)_(l 0)
o¢ 6x_<ycr v )\ne m, ) \0 1) (3.24)

With this new metric, the derivative of a function, u = u(x, y), is expressed

ou_du o du oy
dx O dx  Opox’
And 0u/0y can be similarly expressed.

Consider a smooth function, f[D] € C[|D] for which f(x) : D — R. The integration on the physical ele-
ment D is computed by the following formulation:

[ rwdx= [aronae (3.25
D 1
where J is the transformation Jacobian
Ox
J = a—é .

In addition to the integration for the element D, the integration over the sides of the element D needs to
be computed, too. Once the mapping ¥ has been established, the mappings between the sides of the
physical element and the sides of the reference element can also be derived. The integration on one of the
side, 71 V5, of the physical element D is computed by

__ﬂw®=/gMU©Mi (326

nr, N

where J is the Jacobian of the transformation relating the side ;75 of the physical element D to the side
Vi1 of the reference element 1.

3.3. A multivariate polynomial basis on the standard reference element

First, we construct a set of basis functions on the standard reference element 7, then using the mapping
¥, we can obtain a set of basis functions on the physical element D. For example, we can define a set of
basis functions on the standard reference element 7 in Fig. 1 or 2:

P} = span{&'y’si,j > 05i +j<n} = span{¢;} .,
where n signifies the maximum order of the polynomial and N = ((n + 2)(n + 1)) /2. And the corresponding
set of basis functions on the physical element D are
span{&'(x, )’ (x,);4,j = 051+ j < n},
where (1) =¥ (x,).
A set of basis functions for the standard rectangle element can be chosen as
span{L;(&)L;(n);i,j = 0;i+j<n} = span{q’)j};v:l,

where L;(-) is the Legendre polynomial of order i and N = ((n + 2)(n + 1))/2. And the set of basis functions
on each element D is obtained by the mapping ¥. For triangular elements, if higher order basis (n > 7) is
desired, Dubinar orthogonal polynomial basis functions have been shown to provide well-conditioned mass
matrices (3.34) and yield exponential convergence for even discontinuous fields [16].
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3.4. Space discretization

With the function basis and the flux defined, we can formulate the DGM for Maxwell’s equations, Eqgs.
(2.10) and (2.11). First, we assume that the electric field £., and magnetic field A, and H, are represented in
terms of the basis functions ¢;(x),

ZNxt ZEZJ¢
N
/\Nxt Z x1¢

nyt Z

within each general curvilinear element D. Here E.; and H,;, H,; are the time-dependent coefficients and
¢;(x) is the jth basis function. And U? is also projected to the function space expanded by the basis
functions,

zsNxt ZPZS]¢ : S:17273747

Qlet ZQZ/ t:X,y.

We shall require that the equation, Eq. (3.3), be satisfied in the following way:

(1)
/ (agN (%) =SV, (x) — A Vd)i(x)) dx + / hy (U, UL ), (x) ds = 0, (3.27)
p ! oD

where U, hy(UY)) 7, UJ™), and S\ = (8%, St Si)" refer to the approximate state Vector flux, and body
force, respectively. U“)' is the approximate field value local to the element D, and U *is the approx1mate
field value from the nelghbor element. hp = (%, k% h2)T is the numerical flux. S’ (x H=>" i1 i (x),
| =E. HH, where Sl SH‘ S are the time-dependent coefficients.

Also Eq (3 4) is satlsﬁed in the following way:

(2)
/ (a‘;f (x) —s§3>¢i<x>> dx =0, (3.28)

where Ug\f) and Sﬁ) refer to the approximate state vector, and body force, respectively.
Assuming that €, i, 0+, 65, 7,0 be constant on each element, Eqs. (3.27) and (3.28) can be written as

N N
Z(em S+ M M*}Hx,j)Jr / I (U7, U )il ds = 3 S, (3.29)
- oD j=1

j=1
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where

€rs — €0
sz = — |:O' + Er,oc(o-x + O-y) _|_ 7:|

E.;+P,;+P,;—P3;—P.a,

N N
dH, ; _ )
> (urM,-jd/ ME) + / HEUST U g ds = 3 st
D j=1

St = —p (0, — 0x)Hej + O,

N N
dH, ; N . _ : .,

Z(’“‘fM"f d?"w,-Ez,_,-) + [ MU U0 ds = Soms)

j=1 D J=1

where

H,

Si" = —(0x — 0y)Hy; + Oy,

-

dP.,;
<MJTJ + Er,oonO'yMjEz,j) =0,

j=1

N

do,;
Z (MJTM +o,M;Q,; — ,urGy(O'x - O-,V)MJ'HVJ') =0.

Jj=1

Here we have introduced the local mass matrix
My = [ 6,006, x)dx
D

and two local stiffness matrices

X __ ad)l(x)
Mz:/—/DT@(x)dxa

00
My = [ 28, wax

After introducing the following notations:

EZ = (Ez‘] ) Ez‘2> ... ;EZ,N>T7 Hx = (Hx‘th‘Za .. 7Hx‘N)T

)

Hy:(Hy,17]_]y,25"'7Hy,N)Ta ¢:(¢1’¢27"'7¢N)T

559

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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Eqgs. (3.29)—(3.33) read explicitly

dF* 1
. —(er M) M + (600M) " MPHY — (e, M) hg:(Ujv”*,Uﬁv“‘*)qys(x)ds+6 Sk, (3.35)
oD Ir,00

where
Sy = (S, 857,....88)",
dH' By Vea n: -1 He (p1(Di= y1().+ 1 H,
o = )M () [0 U ) ds ST (336)

oD Wy

where

SZX = (Siqxasg\‘v s 7S/\}/1V)Ta

H’ 1
% = _(:urM)ilMsz - (:urM)il b hg‘:(U}(\;),ia UE\;)’JF)(P(x)dS + M_S}\H/}7 (337)

where

SV = (81,8 ...,8)",

dP.;,

& —€r.000x0yE; (3.38)
do,;
gt £ = —0,0y, + 1,0,(0x — 0,)H, ;. (3.39)

Egs. (3.35)-(3.39) are ordinary equations and will be solved by Runge-Kutta methods.

4. Numerical results
4.1. Validation of the UPML boundary conditions for the DGM

To validate the accuracy of the proposed UPML boundary conditions, we consider a standard test
problem [14,13] to simulate an outgoing cylindrical wave generated by a hard source inside the compu-
tational domain. Fig. 3 shows two domains (27 C Q) on which both FDTD algorithm and the DGM will
be used and compared for the calculation of a TM, wave.

For a given numerical algorithm and a specific boundary treatment, we make two independent calcu-
lations, first we compute the scattering field, denoted by E®, of the hard source on the bigger domain Qp
with zero boundary condition on 9Q (€5 is chosen to be large enough so no reflection will come into Q7
within the duration of the computation time). Second, we compute the solution E” on the smaller test
domain Q7 with the specific boundary condition imposed on 0Q7. Then, we define the difference at mesh
point (i, j) € Qr between the two solutions as the reflection error caused by the specific boundary condition,

D(i,j) = E;(i,j) — E(i.)). (4.1)
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The second-order Yee’s finite difference scheme is used to test the accuracy of the Mur absorbing boundary
condition (ABC) while the DGM to test the accuracy of the UPML boundary treatment. The general
second-order absorbing boundary condition [14] at the left grid boundary of Qr is given by

o? Do o? 0?
wal el ter

52U =0 (4.2)

where U is the component of the electric field ., ¢ is the velocity of the light in the free space. The choice of
the coefficients py and p, in (4.2) produces various families of absorbing boundary conditions. With py = 1
and p, = —0.5, (4.2) corresponds to the Mur ABC [13]. The ABCs at the other boundaries of Q7 are similar
to Eq. (4.2).

In the Yee’s scheme, a global reflected error is defined as

E= Y D)), (4.3)

(ij)e@r

which measures the total reflected error within the test domain at a given time step. For the DGM, the
global reflected error is defined by,
1

E—
K]

/ng@VM®. (4.4)
Ki;

K,‘_J'CQT

Similar mesh sizes are used for both Yee’s scheme and the DGM. The local reflection error was obtained
at the first row of the grid points away from the boundary y = 0. Fig. 4 compares the local error due to the
second-order Mur ABC and 10-cell PML boundary treatment (with a reflection factor (4.17) R(0) = e~ '9).
The local error was scaled by the maximum absolute value of E.. Fig. 4 shows that the local error due the
UPML is on the order of 10~ x Mur ABC, i.e., 180 dB below the Mur ABC. Fig. 5 is the global error for
both the Mur ABC and the PML ABC, which shows that the global error due to the PML is on the order of
10~19 x Mur ABC, i.e., 100 dB below the Mur ABC.

Mur ABC ——

Normalized local error

0 20 40 60 80 100
Grid no.

Fig. 4. Local E, error at time-step n = 100 for both the second-order Mur ABC and a 10-cell cubic graded UPML, plotted on a
logarithmic vertical scale.
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100 ‘ :
Mur ABC —e—
UPML ABC —e—
109} .
10710 1

Global error

-30 L L L L L L L
60 80 100 120 140 160 180 200

Time step

Fig. 5. Global error for both the second-order Mur ABC and a 10-cell cubic graded UPML, plotted as a function of time-step number
on a logarithmic vertical scale.

4.2. Exponential convergence for TE and TM scattering of a dielectric cylinder

As high order basis functions can be used in the DGMs, we expect the convergence rate will be expo-
nential with respect to the order of basis functions. In this example, we will demonstrate such an expo-
nential convergence of the DGMs for the scattering of a dielectric cylinder.

We will consider both the TM and TE scattering, for the two-dimensional TM wave, we have the
Maxwell’s equations

OE, OH, OH,

r - ) 4.5
“or T ax oy (43)
OH, OF,
Tx T 4.6
Mo oy’ (4.6)
0H, OE,
=y 4.7
:ur at ax ) ( )
subject to boundary conditions between two regions with material parameters, ¢, and p,, for £ = 1,2, as
ED = g, (4.8)
ax HY = ax H?. (4.9)

Here H* = (H®,H",0), k= 1,2 and & = (n,,n,,0) represents a unit normal to the material interface.
Similar equations can be written for the TE case and are omitted here.
We assume that the cylinder with radius »y = 0.6, ¢; = 2.25, y, = 2 embedded in the free space is illu-

minated by a TM time-harmonic incident plane wave of the form
E! = cos(kex — wt), Hyi = —cos(kox — wt), (4.10)

where the propagation constant for homogeneous, isotropic free-space medium ky = w./tiy€o.
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We will use the scattering wave formulation

OE: OH; OH: OE!

“o oy 9% (411)
OH? OE® . OH!
T _OE . i\ OH 4.12
Mr at ay (Hr Mr) at Y ( )
OH® JE® __0H!
7z — ) —2

For the TE excitation, we choose the cylinder’s parameters to be e; = 2 and p, = 1.96. The incident plane
wave is set to be

H! = cos(kox — ot), Ei = cos(kox — wt). (4.14)

4.2.1. Exact boundary conditions

With the angular frequency w = 2n, we first use the exact series solution [18] as the boundary conditions
and initial conditions. Temporal integration of the semi-discretized approximation given in Egs. (3.35)-
(3.39) is done using a (n + 1)th order (n is the order of the polynomial of the basis functions) or fourth-
order Runge-Kutta method if n > 3. The time step used in the computation is taken heuristically to be

At = CFL ming /& i;h, (4.15)

with /e, being the modified local speed of light due to materials, 4 is the minimum mesh size (the
minimum length of the sides), and CFL typically takes values of 1/(2n + 1). More rigorous criteria for the
selection of the time steps for unstructured meshes can be found in [23].

We can see the exponential convergence with increasing order of the approximation » in Fig. 6 for a fixed
mesh.

4.2.2. PML boundary treatment
Next we will show the effect of PML boundary treatment on the accuracy of the DGM. The finite el-
ement triangularization is shown in Fig. 7. The UPML losses o, (x) is set to be polynomial profile [13],

Ux(x) = (l/d)max,mam (416)

where / is the distance from the interface between the PML and the physical solution domain, and d is the
thickness of the PML. The definition of o,(y) is similar. Eq. (4.16) increases the value of the PMLs o,
from zero at / = 0, the surface of the PML, to o, m.x at / = d, the PEC outer boundary. The reflection
factor is

R(O) — e_zﬂax‘maxdfroc COS()/(m+1)7 (417)
where # is the PMLs characteristic wave impedance and 0 is the incident angle. For polynomial grading, the
PML parameters can be readily determined for a given error estimate. For example, let m, d, and the
desired reflection error R(0) be known, o, m.x can be computed as

Oy max = _w~ (418)
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10 L2-norrﬁ,TM —o—
L,-norm, TE = ---2--
-2
107 E
. 10° ¢ -2 3
[<]
w10t E w0 1
107° ¢ AN 1
10}
10-7 | |
1 2 3 4
n

Fig. 6. Exponential decay of the L,-norm of the error of E, with increasing order of approximation, n. The exact boundary condition is
used.

OOAINALE:

05+

-1 0 1
X

Fig. 7. Triangularization of the initial computational domain [—1, 1]2 containing a circle of radius 0.6 centered at (0,0) and a PML
region.

Again, we see the exponential convergence with increasing order of the approximation # in a semi-log plot
Fig. 8 for a different fixed mesh with a 10 cell PML region (with a reflection factor (4.17) R(0) = e~ '%).
However, it should be noted that once the reflection errors from the PML layers dominate the discreti-
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10° w CE
L”-norm, TM
L2-norm,TE - -
107 F
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GN107E
10°
10
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Fig. 8. Exponential decay of the L,-norm of the error of E, with respect to the order of the basis function n. A 10 cell UPML is used to
terminate the computational domain.

zation errors of the DGM, the exponential convergence will not continue. Meanwhile, Figs. 9-11
show the contour of the TM scattering wave H,, H, and E. using the fourth order of approximation,

respectively.

0.8

0.6

0.4
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-0.2
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Fig. 9. The contour of the scattered £, with the order of approximation, n = 4.
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Remark. We would like to discuss the divergence free property of the proposed DGM, the method does not
impose the divergence free condition explicitly in the design of the method. However, our numerical results
have shown that the magnitude for the divergence of the magnetic field for TM case or the electric field for
TE case remains at the level of the initial data. Fig. 12 shows the exponential convergence of zero diver-
gence of the magnetic field on a semi-log plot.

There has some recent work on using divergence free basis function in each individual elements, thus
eliminating one of the sources of the divergence error [22].

L2-norm, ™

L™-norm, TE —=

Divergence Error

Fig. 12. Exponential decay of the L,-norm of the divergence error of magnetic field with respect to the order of the basis function n. A
10 cell UPML is used to terminate the computational domain.

1 ® Receiver
® Source
0.5
O |-
-0.5
-1
Tt Il Il Il Il
' -0.5 0 0.5 1

Fig. 13. A dispersive rotated square cylinder.
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4.3. Scattering by a dispersive square cylinder

To demonstrate the proposed unified formulation of the DGM for dispersive and PML regions, we will
compute the scattered field from a dispersive square cylinder illustrated in Fig. 13. All units are non-
dimensionalized in this example. We will consider two types of dispersive media: Medium I: ¢ o, =4,
&s = 12,6 =10.002 S/m, t = 2.0 x 1071°, Medium II: ¢, . = 9, €, = 16, ¢ = 0.004 S/m, T = 6.4 x 107! The
cylinder is of Debye Medium II and the background is a medium of Medium I [19]. The geometry of the
cylinder and the locations of the source and receiver are shown in Fig. 13. The source locates at (0.0,0.72)
in the center of a rectangular element, and the receiver locates at (0.0,0.92). The time step Az = 0.002. The

triangle mesh is generated with the shortest side of the resulting mesh being 0.028. The PML region has a
width of 10 cells.

Incident E,

40 60 80
Time (ns)

Fig. 14. Incident field at the receiver as a function of time and the background is Medium I.

x107°

Scattered E, (V/m)

-4 1 1 1
0 20 40 60 80
Time (ns)

Fig. 15. Scattered field at the receiver as a function of time of a rotated square cylinder and the background is Medium I.



T. Lu et al. | Journal of Computational Physics 200 (2004) 549-580 569

We select the source to be an electric current source in z-direction (J;), which is the following Gaussian
pulse:

Lu)zeq)<—-(2;s>z>, (4.19)

where #) = 0.54, tyecay = #/4, and f, = 5/3.

Fig. 14 shows the incident field E! as a function of time in the absence of the square cylinder. When the
dispersive cylinder is present, we calculate the total field. By subtracting the incident field from the total
field, we obtain in Fig. 15 the scattered field E} as a function of time.

5. Conclusion

We have presented a unified formulation of DGMs for Maxwell’s equations in a linear dispersive and
lossy Debye materials and in the artificial PML regions. Numerical results demonstrate the excellent
performance of the PML layer with the DGM, and also the exponential convergence of the DGM even for
discontinuous solutions provided that the errors from the PML layers do not dominate the errors from the
discontinuous Galerkin discretization.
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Appendix A. Unified formulation of Maxwell’s equations in dispersive media and UPML region

Consider an inhomogeneous, conductive and electrically dispersive medium with magnetic relative
permeability u, and conductivity o. A general time-harmonic form of Maxwell’s equations in a dispersive
medium or a UPML can be written as

vXﬁzm@G+JLﬁE (A1)
Je€y
V x E = _jw:uO:urﬁI—UIa (Az)
where
“ 0 0
e=u=|0 % 0 (A.3)
0o 0 g%
and
g .
si=14+——, i=xy,z (A4)
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€0 and p, are the permittivity and permeability of free space, respectively, and ¢, is the relative permittivity
of the dispersive media. g; = 0 corresponds to the original physical dispersive medium. We consider two
important classes of material dispersions: the Debye relaxation and the Lorentzian resonance. These two
cases are now defined using the exp(jowt) time convention for phasor quantities (cf. [13, pp. 374-375]). For a
Debye medium having P poles, we have

_ 6rsp €r00p A5
6r9c+z T jor, (A.5)

where €., is the static zero-frequency relative permittivity, €., is the relative permittivity at infinite fre-
quency due to the pth Debye pole, and 1, is the pth pole relaxation time.
For a Lorentz medium having P pole pairs, we have

Ersp - Eroop)wz
= e s Treen) Ty A6
- +Zw2+2]w5 (A-6)

where w, is the frequency of the pth Lorentz pole pair (the undamped resonant frequency of the medium)
and ¢, is the damping coefficient.

In this paper, we will give the formulation for the Debye medium. Let the relative permittivity with a
single pole be

€rs — 6r,oc
Er((l)) = 61-790 + TJQ}’L’ . (A7)

For simplicity, we just consider the 2D TM, case (s, = 1), the Maxwell’s equations for TM, wave for the
Debye medium having a single pole can be written as

61:[y 0H, . €rs — €roo o o
_—_ = oo F 22— s, EL, A8
ox Qy 10¢ (6 oot 1 +jowr +qu€0 )S % (A8)
oE. . Sy -
a_ = _Jw:uolur_yHXa (Ag)
Y Sx
a“ ) *H (A.10)
ax .] .u():ur y ye .

Eq. (A.8) can be written as

oH, oH, o o . o y
ax) % = joeer o E: + 0B + J. 1 () + Ja(0) + J3(0) + Joa(w), (A.11)
where
o (@) = joeoero (.5, = 1)E, (A.12)
7 . €rs — €roo g
Ja(0) = joe——E, (A.13)

1+ jor
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N : €rs — €r0 ¥ 7 €rs — €roo Yy

Jzﬁ3(w) = Jw€0£+—m(sxsy — l)Ez = (SXS_V — I)Lz(w) = mt]z‘] ((}J), (A14)
o o o o

JZ_’4((,L)) = 0<sty — I)Ez = ja)eoenoo Jz_yl(w). (AIS)

After substituting s, and s, from Eq. (A.4), we have

Ji(w) :jw606m<(1+.ax )(1+.O-y ) _ 1>Ezzjweoer_oc O')f+0'y+ .axcryz .
' ' Jwey Jwey ' Jogy  (jwe)

= 6o (00 + 0,)E. + ;%Ooxayéz, (A.16)
Joa(w) = joe %E} (A17)
Jos(w) = ﬁh (A.18)
Toa(w :J,m:em j (A.19)

Now considering Eq. (A.11), we apply the inverse Fourier transform using the identity
jof (w) — (0/0t)f(¢). This yields an equivalent equation of time-domain differential equation for Eq.
(A.11)

o, o,
Ox oy

OFE.
= €06roo 7, + 0E. 4+ J.1 () + Joa(t) + J25(2) + Joa(2). (A.20)

Next we will derive dynamic equations for (A.16)—(A.19). The way to obtain a dynamic equation for J_
from Eq. (A.16) is to first multiply both sides of this equation by (jw), which gives

jcoj“ = j0€r oo (0 + oy)Ez + Er’—maxay]?z. (A.21)
€0
Exploiting the differentiation theorem for the Fourier transform, we perform an inverse Fourier transform
of each term in Eq. (A.21)

6JZ‘1 (l)
ot

OE. L €r.00
ot (&)

= €0 (0x + 0y) 0,0,E;. (A.22)

To obtain the dynamic equation for J,, from Eq. (A.17), we again multiply both sides of this equation by
(I 4 jor),

Joo +iwt)., = joe(ers — €r00)Ex. (A.23)
Similarly, using the inverse Fourier transform, we get

A O,

Jz A, rs — troo) A,
2F T =l —ax) 3,

and by the same token, from (A.18) and (A.19) we have

(A.24)
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an‘Z'a _ €rs — Er,ooJ

J 15 A.25

st p— (A.25)

8Jz4 g

L L Y A.26
ot €0€r.00 o ( )

(A.22), (A.24)—(A.26) are the time domain differential equations for all J;s.

Next, we will further simplify the differential equations for the polarization currents J.s so that they will
become simply ordinary differential equations as shown in (2.8).

Considering Eq. (A.22), introduce a new parameter

Pz,l = —Jzl + 6r.,:x: (O-x + O-y)Ez~ (A27)
Then Eq. (A.22) can be written as

oP., €r.00
= E.. A2
o, ” 0,0,E, (A.28)

Similarly for Eq. (A.24), introducing a new parameter

Po=—J.s +MEZ’ (A.29)
we have
oP., 1
= =—J.,. A.30
5 — = (A.30)

From Egs. (A.27) and (A.29), we can get
Jz41 = _Pz,l + €r,00 (O-x + O-y)Ez (A31)
and

60(6r,s - 6r,oo)

E.. A.32
: (A.32)

JZAVZ — —17z2 +

Now, after substituting for J,; and J., from Eqgs. (A.31) and (A.32) into Eq. (A.20), we have

OH, OH, OF. €0(€rs — €roo
a—xy - ay = €0€r,00 E + O-E'z - I:)z.l + €r,00 (Gx + Gy)Ez - F)LZ + M

E. +J.5(t) + J.4(t)

€0 (Er,s - 6r,oc)

Ez - PZ,] - Pz,2 + Jz,3 + Jz.4- (A33)
T )

OF.
= €0€ro 5 + |0+ &0 +0,) +

Next considering Eq. (A.30), after substituting for J., from Eq. (A.32), we have

aPzZ 1 60(61‘5_61‘00)
2___p = Sy o A.34
ot T + 72 ( )
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Similarly for Eq. (A.25), after substituting for J,; from Eq. (A.31), we have

aJ. 3 1 €rs — €ro0
at I ;‘]ZJ + 7 [ — F)z,l + Er,oc(o-x + a}’)EZ]
1 rs — €roo s~ troo/\Tx :
= T —Jz3 _e‘s 6" Pz,l +(6, E’ )(O—( +O—})EZ' (A35)
T €ro0T T

Finally, for Eq. (A.26), after substituting for J,; from Eq. (A.31), we have

oJ; x
4_ 0O Pyt o(o, +0y)
ot €0€r.00 €0

E.. (A.36)

Similar operations can be done to Faraday’s Law equations (A.9) and (A.10), and we have the following
equations:

OF OH., oy
. H A.
oy Mol T M + O, (A.37)
OF, 0H, 0y
T Mok T Mok o =240, (A.38)
0. o 0.+ Hoﬂro'x(oz'y — 0x) ., (A.39)
ot € €
20, _ %o+ | o, (0: = 0y) py (A.40)
ot €

For consistency of notations, we let P.5 = J.3 and P.4 = J.4, then from Eqgs. (A.33), (A.37), (A.38), (A.28),
(A.34), (A.35), (A.36), (A.39) and (A.40), we get a new set of equations for E., Hy, H,, P.1, P>, P.3, P4, O,
0, as follows:

aEZ o aHy 6HV 6O(Gr,s - 6r,oc)

€froc 3, = 3y 3 0+ €(0:+0y) + E.+P,+P,—P;3;—P,, (A.41)
uour% =- aaliz oty 22— - % H, + 0., (A.42)
Kol r@gj a@iz .Uo,“ra H + 0, (A.43)
% =- ere"—;oaxayEz, (A.44)
agf = —% 5+ (6;426‘”)15 (A.45)
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aPz 1 rs — Croo rs — troo x )
s Lp, fotmp ((ra)loto), (A.46)
ot T €roT ’ T
OP, )
4 - - i F)z.l + a<a i O-y) Eza (A47)
ot €0€roo €0
@ X X X ) — Ux
0 ey, Holh® (? &) ., (A.48)
ot € €
o0 g Lott,0,(6;, — a,
%0 % g, 4 Mot =) (A.49)
€0 €

Notice that Egs. (A.44)—(A.49) contain no spatial derivatives and hence they are simply o.d.e.’s for P.;, P.,,
P.3, P.4, O., O,. Abarbanel and Gottlieb [12] pointed that the system using split-field PML terminating the
computational domain was only weakly well-posed for the initial value problem. In contrast, the system
(A.41)-(A.49), after dropping the undifferentiated terms, becomes the original 3 x 3 Maxwell system which
is symmetric hyperbolic and therefore strongly well-posed.

It is straightforward to generalize this method for the medium having many Debye poles or Lorentz
pole-pairs or for three-dimensional cases.

Appendix B. Non-dimensionalization of Maxwell’s equations

Maxwell’s equations are given as

GEZ - a]:ly _ a]':l\g 6O(GrA,s - erﬁoo)

€0€r 00 ﬁ = g 65/ — |6+ Er,oo(a'x + 6'))) + 7 Ez + z,1 + z2 Pz,3 - Pz,4 (Bl)
0H, OE. o .
Mokt —== = = i Hokt = 60 Hy + Oy, (B.2)
0H, OE, 6. — &y ~ =
ﬂoﬂrai}f:g_ﬂoﬂr?yHeran (B.3)
ale €roo ~ ~ &
- = ———6.0,FE., B.4
at €0 ¢ Uy ( )
aﬁzz I 60(6rs_€rc>o)~
= ——P,+—"—-—F B.5
ot 7l 72 ( )
apz 1~ rs = Crooo 3 rs — Crooo ~v Oy) =
2 o z,3*6’ - Pz,1+(€’ ‘. N)(O-“ +6})Ez, (B.6)
ot T €r ool T
0Py & p (6, +a,) i (B.7)

~ - z,1
ot €0€r.00 €
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an 6)( >~ :u():ur&x(&y B &X) I
> 2 4 ey T P B.8
ot €0 Oct e (B2)
00 Gy~ Ul G, (6x — ) ~
a;y — __ny + 0 Y ( > ) ) Hv’ (B9)
€0 €0

where ¢, and p, are the free space permittivity and permeability. The speed of light in free space is given by
_ —-1)2 e . . _ 1/2
¢ = (eolty)” '~. The characteristic impedance of free space is given by Z = (y,/€) .
We non-dimensionalize the above set as follows:

x=Xx/L, y=3/L, t=-ct/L, (B.10)
H,=ZH, H,=ZH, E.=E., (B.11)
P, =LZP.;, i=1,234, (B.12)
0. =L0., 0, =L, (B.13)
o =175, o,=1LZs, 0, =LZ5, (B.14)
T =c1/L, (B.15)

L is a reference length associated with a given problem.
Thus, the non-dimensionalized form of Egs. (B.1)-(B.9) is:

OE. O0H, OH, €5 — €
r:x:_Z: 2 = — r.oo\Ox - = Ez IDZ IDZ _1)z _I)z 3 B.16
O TR 0+ €nol0r+0,) + . + P+ P,y—P3—Py (B.16)

OH OE.

O % (6, — 6 )H, + O, B.17
:ur at ay .“r(o'_v g ) + Q ( )

OH, OE.

—r— — —0,)H , B.1
e ot o (o5 — 0,)H, + O, (B.18)
OP.,

F = —Gl-pogxayEz, (B19)
OP., 1 €rs — €roo
2o _lp GGy B.20
ot P * 72 ( )
aPz 1 s — Crooo r,s — troo X
’3:7_ 2,376‘ 67 ])z,l+(6’ &, )(O- +6y)Ezv (le)
ot T €rooT T
OP,
—A == 7i}3241 + O-(O-x + Uy)Ez; (Bzz)
ot €roo
00,
Q = _axQx + ,Lter(O'y - O-x)H)n (B23)

ot
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00,
% = —0,0) + .0,(0: — 0,)H,. (B.24)

Appendix C. Riemann problem for dispersive media and the numerical flux equation (3.21)

The numerical flux equation (3.21) can be obtained by solving a one-dimensional Riemann problem with
initial data indicated in Fig. 16. Mohammadian et al. [17] has obtained the numerical fluxes to the problem
without source terms. Here, we will derive the fluxes to the case with source terms.

The weak solution [20,21] U= (fj(”, ﬁ('))T to (3.12) and (3.13) satisfies for all functions
YV e CL(R x [0, +00))” and ' € C}(R x [0, +00))°

00 B alll(l) - ~ 0 ~
1, 1, 1 (1) (D 1,1 —
/0 /R{U Loy (AT) dCdt+/RU (,0) -y (570)dc+/0 /Rs yDdede =0,

(C.1)

* [ W (2) ) e 40 _
/O /RU - dCdt+/RU (,0)- ¥ (c,O)dCJr/O /RS Y2 dedr = 0. (C.2)

And it can be proved [20] that (C.1) and (C.2) imply that a piecewise C' function U is a solution of (3.12)—
(3.14) if and only if the following two conditions are satisfied:

(i) U is a classical solution of R x [0,400) in the domains where U is C';

(i) U satisfies the Rankine—Hugoniot condition along a line of discontinuity with a speed s

(O — OO = A~ GO0 — A AT, (C3)

where * and ~ denote the limits on each side of the line of discontinuity.

If there are no source terms, S and S@, piecewise constant solution in domain { < 0 and domain { > 0
can be obtained. Since A - n is a constant matrix in both domains, we can construct the solution using the
eigen-decomposition method [21]. It should be noted that an extra boundary condition is needed at { =0
for either domain, and these two boundary conditions are related by the Rankine-Hugoniot condition at
(=0, ie, A~ -aUD* — AT . UV = 0. (The meaning of * and ** are indicated in Fig. 16). With the
source terms, the solution to this Riemann problem will not be piecewise constant anymore. But the lin-

Fig. 16. Solution of the Riemann problem.
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earity of the problem implies that the characteristics are still independent of the solution U, and, thus,
straight lines. However, we need to integrate along the characteristics to obtain the solution. Applying
Rankine-Hugoniot conditions at the lines of discontinuity, we will get the solution in the whole domain
(=00, +00) x [0, +00).

As U satisfies ordinary equations, and no spatial numerical fluxes are needed. So we just concentrate
on solving U, For simplicity, let u denote U'" and 4 denote A - . Then, the one dimensional Riemann
problem becomes

) 0 ~
= I — QM
3" + o (Au) =SV, (C4)
u, <0,
u((,0) = {u+ g =0 (C.5)
where
4, (<0,
A—{A+, {0, (C6)
and
0 ny/uf =/t
AT = n /e 0 0 . (C.7)
—nx/gfOO 0 0

AT has three different eigenvalues

M =—c", A3=0, 1i=c" (C.8)
where ¢ = (efwyf)fl/ * is the speed of light in the medium. 4% is diagonalizable with real eigenvectors,
namely

AT = RTAT(R7)™! (C.9)

where AT = diag(4],4],4]) is a diagonal matrix composed of A¥s eigenvalues, respectively. And
R* = (rf|rf|r]) is the matrix of right eigenvectors, and (R¥)™" is R¥s inverse matrix

1 0 1 1 1 —nY* nY*
R = | -nZ% n, nz¥ |, (RT)'= 3 0 2n 2n, |, (C.10)
nZ% n, —nZ% 1 nY" —nYT

where ZF = 1/Y% = (u /%)
We define the new parameters v,

_f@®) ' if¢<o,
' { (R if ¢ > 0. (C.11)

In each of the region { < 0 or { > 0 along the pth characteristic, we have

d
gupa—czsp, p=1,2,3. (C.12)

where S, is the pth component of the source term R~'S", and
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A if (<0,
_ P
by = {z; if >0, (C.13)
The solution can be explicitly given by
t
0,(C,8) = v,(§ — 2,2, 0) +/ S, dr (C.14)
0

where the integration is done along the characteristic { — 4,7 = { — 4,¢ with the initial value of v given as

v, <0 [®) T, (<0
v(6,0) = {v*7 (>0. { (R*)'ut, (>0. (C.15)

From the definition of the numerical flux (3.18), we just need to compute the limit value
lim,_o+ UY(07,7) or lim,_o- UV (0%, 1).

Now consider a point E in Fig. 17. We can integrate along the line { — ¢t = {; — ¢tz to get v3({;, tr),
and the line { + ¢t = {z + ¢tz to get vi({},1:). (Note that {; = 0.)

From v3(07,#), v1(0",#z) and the Rankine-Hugoniot condition at the characteristic { =0

ATu(0", 1) — A (0™, 1) = 0, (C.16)

we can get the unknown values v1(07,#;) and v3(07, #z).
Using Egs. (C.9) and (C.11), Eq. (C.16) can be rewritten as

—c (07, tp)r] +c v3(07, t5)r; = —c o (0%, 15)r] + ¢ u3(07, )1y (C.17)
or
—c” c _ —c* ct +
cnZ” cnZ”- (zlgg’?;> = ctnZ* ctn,Zt <5128+’;E§> (C.18)
—cnZ” —cnZ” S\T0E —ct'n Zt —ctnZ* T E

From Eq. (C.18), we can solve

- z-—z* - 2zt ot +
(UI(O 7tE)) _ T 7 izt 173(0 ,ZE) +Z’+Z+ 5_—1]1(0 7tE) (C 19)
+ =\ -z 27- = - : :
US(O 7tE) Tz 01(0+,IE)+WZ—+U3(O ,IE)
A
1l 1}
C
B
AN VNN v
| SN /1 ~
Py s | \\ /o S o -
A 7 IE A~ ~ o
/\\/ ’ N -~ D
a \ A | . - ~ .
s g | \\ // ! ! . /1 S i
- +
G a Gt

Fig. 17. Construction of solution to Riemann problem at ({, 7).
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From Egs. (C.14) and (C.15), we have

1524 e
0 (0%, 15) = vf + / S, 50, t) = vy + / s, dt. (C.20)
0 0
Let t — 0", we have
lim v (0%, 2) =vf, lim v3(07,¢¢) = v5. (C.21)
tE—>0Jr tE—>0Jr

From Eq. (C.16) and the definition of the numerical flux (3.18), we can get the numerical flux

h(1177 l]+) = t}ij%]+A+u7 (0+, tE) = t:ijl(’)l+(—c+l)1 (O+, l‘E)l';r + C+U3 (0+, IE)r;r). (C22)

Substituting v3(0",#z) in Eq. (C.19) into the Eq. (C.22) gives
Z -7 27~

h(uﬂu*) = t;ij}(}r — C*UI(OJF’Z‘E)I'T + c+mvl(0+’t5)r3+ +C7277_|_Z+U3(07,1E)1'§L . (C23)
Using Egs. (C.21) and (C.23), we get
N A AL _ 2z
h(u 7u+) = 7C+UI+I'T + C'+ ﬁvfl’; +c m% l‘3+. (C24)

Substituting v{ and v; in Eq. (C.15) and r{ and rj in Eq. (C.10) into Eq. (C.24) gives

B [2(ncHy—ny H)~E.] +[Z(neHy—nyHo)+E2]

7z +Z* B
- o) [YE.—(ncHy—nyHy)| "+ [VE.+(ncHy—nyHy)]
[YE:— (neHy—ny )]+ [YEA-(nHy —ny 1)
—y Y 1r+

which proves Eq. (3.21). And a similar method applying to the three dimensional Maxwell’s equations gives
Eq. (3.20).
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