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Abstract

In this paper, we will present a unified formulation of discontinuous Galerkin method (DGM) for Maxwell’s

equations in linear dispersive and lossy materials of Debye type and in the artificial perfectly matched layer (PML)

regions. An auxiliary differential equation (ADE) method is used to handle the frequency-dependent constitutive re-

lations with the help of auxiliary polarization currents in the computational and PML regions. The numerical flux for

the dispersive lossy Maxwell’s equations with the auxiliary polarization current variables is derived. Various numerical

results are provided to validate the proposed formulation.
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1. Introduction

There has been active recent research in the development of discontinuous Galerkin methods (DGMs)

for handling material interfaces arising from electromagnetic scattering [1–4]. The main advantages of the

DGMs are the high order accuracy and parallel implementation as piecewise continuous approximation
spaces are used to represent electromagnetic fields. The material interfaces are conformingly approximated

in the underlying mesh triangulation of the solution domain. There are two approaches in implementing the

DGMs, namely, the h-version and the p-version. Similar to the finite element methods [5], the h-version
allows the mesh size to be decreased to achieve convergence at an order of the employed polynomial basis,

resulting in a finite order method. The alternative p-version allows the order of the polynomials to be

increased with the sizes of the elements kept at an initial triangulation. It will be shown in this paper, even
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for discontinuous fields, exponential convergence with respect to the order of the basis functions can be

obtained for DGM. A hybrid h–p version can also be considered [4].

An important aspect of time domain calculation of Maxwell’s equations is the treatment of boundary
conditions on the truncated computational domains. There are two popular ways of boundary treatment.

The first kind is to define some kind of boundary operators (either differential or integral) so that no reflection

occurs on the boundary, thus so-called non-reflective or absorbing boundary conditions [6–8]. The other kind

of boundary treatment is to create a region of artificial absorbing layer around the computational domain so

that waves, entering the artificial region transparently, will be attenuated within the region and the reflection

back into the computational domain will be negligible and controllable. The second approach was initiated

by Berenger’s PML [9] and has attractedmuch research along this direction including the anitropic (Uniaxial)

PML region [10,11]. The PML treatment of Berenger relies on the split field formulation of the Maxwell’s
equations in the PML region and has been shown in [12] to be only weakly stable. The uniaxial PML (UPML)

proposed by Sacks and Ziolkowski does not require the splitting of the Maxwell’s fields and is accomplished

with the help of artificial polarization currents in the case of dispersive media. The resulting differential

equations maintain the strong well-posedness of the original Maxwell’s system [12].

In this paper, we will present a unified formulation of DGMs for the Maxwell’s equations in both the

computational and PML regions. To handle the frequency-dependent relation between the polarization

P ;M and the fields E;H , we use the auxiliary differential equation (ADE) method [13] to avoid the con-

volution-type constitutive relation in the time domain. The ADE method will be applicable in both the
computational and PML regions. Several other issues will also be discussed such as the conservative form

of the Maxwell’s equations in both regions, definition of the polarization currents for the Debye media, and

the construction of numerical fluxes based on the Riemann solutions.

The rest of the paper will be organized as follows. In Section 2, we introduce the Maxwell’s equations in

a linear dispersive and lossy media. A unified formulation of the Maxwell’s equations with the added

polarization currents will be introduced for both the computational and PML regions. The details of the

derivation is provided in Appendix A. In Section 3, we give the discontinuous Galerkin discretization of the

Maxwell’s equations and numerical fluxes based on the Riemann solution of the Maxwell’s equations with
the added polarization current variables. In Section 4, numerical examples will be given to first verify the

accuracy of the UPML boundary treatment for the DGM, then to validate the exponential convergence of

the DGMs with the UPML boundary conditions, and finally to simulate the scattering of dispersive objects

in lossy Debye media. A conclusion is given in Section 5 while appendices are included to give various

technical derivations in the paper.
2. Maxwell’s equations in Debye dispersive materials and PML regions

Maxwell’s equations in MKS units are given in the general form as follows:

oD

ot
�r�H ¼ �J; ð2:1Þ
oB

ot
þr� E ¼ 0; ð2:2Þ

where E and H are the macroscopic electric and magnetic fields, D and B are the electric displacement and

magnetic induction fields, respectively, and J the current. The current, J, is typically assumed to be related

to the electric field, E, through Ohm’s law, J ¼ rE, where r measures the finite conductivity of the medium.

In order to solve Maxwell’s equations, we need the constitutive equations that relate D to E and B to H,

respectively
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D ¼ �0�r;1Eþ P; ð2:3Þ
B ¼ l0lr;1HþM; ð2:4Þ
where �0 and l0 are the electric permittivity and the magnetic permeability of free space, �r;1 and lr;1 are

the relative electric permittivity and the relative magnetic permeability of the medium at infinite frequency,

and P and M are the electric polarization and the magnetic polarization, respectively.

In general, the components Pi of the electric polarization P are related to the components Ei of the

electric field E via a power series in the frequency domain (indicated by �) as in Bloembergen [15]

�Pi ¼ �0
X
j

vijðxÞ�Ej þ �20
X
j;k

vijkðxÞ�Ej
�Ek þOð�E3Þ: ð2:5Þ

In linear and isotropic medium, the above relation is terminated at the first term to give

�P ¼ �0vðxÞ�E; ð2:6Þ

where vðxÞ is the electric susceptibility of the medium in frequency domain.

Here we assume that the magnetic polarization is 0, i.e., no magnetic effects are included in the treatment

given here. The generalization of the relation between the magnetic polarizationM and the magnetic fieldH

can be made similarly.

For a single-pole Debye medium, the electric susceptibility in frequency domain can be expressed as

vðxÞ ¼ �r;s � �r;1
1þ jxs

; ð2:7Þ

where �r;s is the static zero-frequency relative electric permittivity, and s is the pole relation time.

The non-dimensionalized Maxwell’s equations for linear dispersive and lossy materials and the artificial

PML regions can be given in a unified form as follows. New auxiliary polarization currents P, Qs are
introduced to decouple the frequency-dependent constitutive relations (2.3) and (2.6) (details of derivations

are given in Appendices A and B). The non-dimensionalized Maxwell’s equations for TM waves in dis-

persive media and in the UPML region are given as

�r;1
oEz

ot
¼ oHy

ox
� oHx

oy
� r
h

þ �r;1ðrx þ ryÞ þ
�r;s � �r;1

s

i
Ez þ Pz;1 þ Pz;2 � Pz;3 � Pz;4;

lr

oHx

ot
¼ � oEz

oy
� lrðry � rxÞHx þ Qx;

lr

oHy

ot
¼ oEz

ox
� lrðrx � ryÞHy þ Qy ;

oPz;1
ot

¼ ��r;1rxryEz;

oPz;2
ot

¼ � 1

s
Pz;2 þ

�r;s � �r;1
s2

Ez;

oPz;3
ot

¼ � 1

s
Pz;3 �

�r;s � �r;1
�r;1s

Pz;1 þ
ð�r;s � �r;1Þðrx þ ryÞ

s
Ez;

oPz;4
ot

¼ � r
�r;1

Pz;1 þ rðrx þ ryÞEz;

oQx

ot
¼ �rxQx þ lrrxðry � rxÞHx;

oQy

ot
¼ �ryQy þ lrryðrx � ryÞHy ;

ð2:8Þ
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where Ez is the z-component of the non-dimensionalized electric field, Hx and Hy are the x- and y-component

of the non-dimensionalized magnetic field, respectively. Again, �r;1 is the relative electric permittivity at

infinite frequency, lr is the relative magnetic permeability. �r;s is the static zero-frequency relative electric
permittivity, s is the non-dimensionalized pole relaxation time, Pz;1, Qx and Qy are auxiliary variables in-

troduced by the PML, Pz;2 is introduced by the medium dispersion, Pz;3 is introduced by the medium dis-

persion and the PML, Pz;4 is introduced by the medium loss and the PML. r is the non-dimensionalized

relative electric conductivity, rx and ry are the parameters for the PML. In the case that rx ¼ ry ¼ 0, the

above equations reduce to the original Maxwell’s equations in the physical dispersive region (2.1) and (2.2).

Similar equations can be derived for the TE waves and will not be repeated here.

Setting U ¼ ð�r;1Ez; lrHx; lrHy ; Pz;1; Pz;2; Pz;3; Pz;4;Qx;QyÞT, the conservation form for the system is

oU

ot
þr � ð �AUÞ ¼ S; ð2:9Þ

where �A and S will be given later. Note that the 4th–9th equations in Eq. (2.8) are all ordinary differential

equations, we can rewrite the conservation system as

oUð1Þ

ot
þr � ðAUð1ÞÞ ¼ Sð1Þ; ð2:10Þ
oUð2Þ

ot
¼ Sð2Þ; ð2:11Þ

where Uð1Þ ¼ ð�r;1Ez; lrHx; lrHyÞT, Uð2Þ ¼ ðPz;1; Pz;2; Pz;3; Pz;4;Qx;QyÞT, U ¼ ðUð1Þ;Uð2ÞÞT, S ¼ ðSð1Þ;Sð2ÞÞT, and
A ¼ ðAx;AyÞ and

Ax ¼
0 0 �1=lr

0 0 0

�1=�r;1 0 0

0
@

1
A; Ay ¼

0 1=lr 0

1=�r;1 0 0

0 0 0

0
@

1
A:

And �A is given as

�A ¼ ð�Ax; �AyÞ;

where

�Ax ¼
Ax 03�6

06�3 06�6

� �
; �Ay ¼

Ay 03�6

06�3 06�6

� �
:

Here 0n�m denotes zero matrix with n rows and m columns. The source terms Sð1Þ and Sð2Þ represent body

forces, e.g., currents,

Sð1Þ ¼
� rþ �r;1ðrx þ ryÞ þ �r;s��r;1

s

� �
Ez þ Pz;1 þ Pz;2 � Pz;3 � Pz;4

�lrðry � rxÞHx þ Qx

�lrðrx � ryÞHy þ Qy

0
@

1
A; ð2:12Þ
Sð2Þ ¼

��r;1rxryEz

� 1
s Pz;2 þ

�r;s��r;1
s2 Ez

� 1
s Pz;3 �

�r;s��r;1
�r;1s Pz;1 þ ð�r;s��r;1Þðrxþry Þ

s Ez

� r
�r;1

Pz;1 þ rðrx þ ryÞEz

�rxQx þ lrrxðry � rxÞHx

�ryQy þ lrryðrx � ryÞHy

0
BBBBBBB@

1
CCCCCCCA
: ð2:13Þ
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3. DGMs for Maxwell’s equations

Let Th be a discretization of the solution domain X. For each element K 2 Th, �r;1 and lr are assumed
constant on each element. We denote a finite-dimensional space of smooth functions defined on the element

K by PðKÞ. This space will be used to approximate the variable U. Set

Vh :¼ fv 2 L1ðXÞ jvjK 2 PðKÞ 8K 2 Thg ð3:1Þ

and

V 9
h :¼ Vh � Vh � � � � � Vh|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

9

: ð3:2Þ

The DGM space discretization of the hyperbolic system for U can be written as follows: Find U 2 V 9
h such

that, for all vh 2 VhZ
K

oUð1Þ

ot
vh

 
� Sð1Þvh �AUð1Þ � rvh

!
dxþ

Z
oK

hKðUð1Þ;�;Uð1Þ;þÞ � n̂Kvh ds ¼ 0; ð3:3Þ
Z
K

oUð2Þ

ot
vh

 
� Sð2Þvh

!
dx ¼ 0; ð3:4Þ

where n̂K ¼ ðnx; nyÞ is the outward unit normal to oK, Uð1Þ;� and Uð1Þ;þ are defined as

Uð1Þ;�ðxÞ ¼ lim
d!0þ

Uð1Þðx� dn̂kÞ;

and the numerical flux hKðUð1Þ;�;Uð1Þ;þÞ is an approximation to n̂K �AUð1ÞjoK on the faces of the element K,
and

hKðUð1Þ;Uð1ÞÞ ¼ n̂K �AUð1ÞjoK : ð3:5Þ
3.1. Numerical flux hKðU ð1Þ;�;U ð1Þ;þÞ

From Eqs. (3.3) and (3.4), we can see that the numerical flux is only needed for Uð1Þ, but not for Uð2Þ. In

the DGM, the computational domain X is composed of cells, or elements, Ki. On Ki, U is approximated by

a linear combination of the basis functions and the approximation is not required to be continuous across

oKi. Therefore, for conservation, we have to replace
R
oKi

AUð1Þ � n̂ds with a numerical fluxZ
oKi

A � n̂Uð1Þ ds ¼
X

e2oKi ;e¼Cij

Z
Cij

hðUð1Þ;i;Uð1Þ;jÞds; ð3:6Þ

where the sum is taken over all the edges e of the cell, and oKi ¼
S
Cij, where Cij ¼ Ki \ Kj, and n̂ is the

outward unit normal vector to Ki. Note that the triangulation is assumed to satisfy the properties of finite-

element triangulation: the Ki are non-overlapping sets and, if e is a given edge of oKi, there exists a unique

Kj such that e ¼ Ki [ Kj. U
ð1Þ;i is the field value local to the element Ki and Uð1Þ;j is the field value local from

the neighbour element Kj.

The flux hðUð1Þ;�;Uð1Þ;þÞ is defined by solving exactly or approximately a one-dimensional Riemann

problem, in the direction n̂ normal to the edge e ¼ Cij. For this purpose, we define new variables f (normal)

and s (tangential) along the element edge
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f ¼ nxxþ nyy ¼ x � n̂; s ¼ �nyxþ nxy ¼ x � n̂?; ð3:7Þ

where n̂ ¼ ðnx; nyÞ, n̂? ¼ ð�ny ; nxÞ and x ¼ ðx; yÞ. The system (2.10) and (2.11) is transformed into

o~Uð1Þ

ot
þ o

of
ðA � n̂~Uð1ÞÞ þ o

os
ðA � n̂? ~Uð1ÞÞ ¼ ~Sð1Þ; ð3:8Þ
o~Uð2Þ

ot
¼ ~Sð2Þ; ð3:9Þ

where

~UðlÞðf; s; tÞ ¼ UðlÞðxðf; sÞ; yðf; sÞ; tÞ; ~SðlÞðf; s; tÞ ¼ SðlÞðxðf; sÞ; yðf; sÞ; tÞ; l ¼ 1; 2 ð3:10Þ

and

A � n̂ ¼ Axnx þ Ayny ; A � n̂? ¼ �Axny þ Aynx: ð3:11Þ

The following shorthand notations are introduced

~U ¼ ð~Uð1Þ; ~Uð2ÞÞT; ~S ¼ ð~Sð1Þ; ~Sð2ÞÞT:

Now, if ~Uð1Þ is constant to each side of the line f ¼ 0, the associated Cauchy problem reduces to the one-

dimensional Riemann problem along the direction n̂,

o

ot
~Uð1Þ þ o

of
ðA � n̂~Uð1ÞÞ ¼ ~Sð1Þ; ð3:12Þ
o

ot
~Uð2Þ ¼ ~Sð2Þ; ð3:13Þ
~Uðf; 0Þ ¼
~U�; f < 0;
~Uþ; f > 0

�
ð3:14Þ

and the flux hðUð1Þ;�;Uð1Þ;þÞ at the point is defined as ðA � n̂~Uð1ÞÞjf¼0. Here ðA � n̂~Uð1ÞÞjf¼0 means

ðA � n̂~Uð1ÞÞjf¼0 ¼ lim
t!0þ

lim
f!0�

A � n̂Uð1Þðf; tÞ
� �

¼ lim
t!0þ

lim
f!0þ

A � n̂Uð1Þðf; tÞ
� �

: ð3:15Þ

Only if the second equality in Eq. (3.15) holds, the definition of the numerical flux makes sense. In fact,

from the Rankine–Hugoniot condition at the discontinuous line f ¼ 0, we can see that the second equality

in Eq. (3.15) should hold.

Assume that the parameters ��r;1, �
þ
r;1, l

�
r , and lþ

r are constant on each element andA � n̂ is discontinuous
across f ¼ 0,

A � n̂ ¼ A� � n̂; f < 0;
Aþ � n̂; f > 0;

�
ð3:16Þ

where

A� � n̂ ¼
0 ny=l�

r �nx=l�
r

ny=��r;1 0 0

�nx=��r;1 0 0

0
@

1
A: ð3:17Þ
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So the numerical flux hKðUð1Þ;�;Uð1Þ;þÞ can be written as follows:

hðUð1Þ;�;Uð1Þ;þÞ ¼ lim
t!0þ

A� ~Uð1Þð0�; tÞ
� �

¼ lim
t!0þ

Aþ ~Uð1Þð0þ; tÞ
� �

; ð3:18Þ

where

~Uð1Þð0�; tÞ ¼ lim
f!0�

~Uð1Þðf; tÞ; ~Uð1Þð0þ; tÞ ¼ lim
f!0þ

~Uð1Þðf; tÞ: ð3:19Þ

The numerical flux hKðUð1Þ;�;Uð1Þ;þÞ for the Maxwell’s equations can be shown as follows:

~hK ¼ �n̂K � ðZHþn̂K�EÞ�þðZH�n̂K�EÞþ
Z�þZþ

n̂K � ðYE�n̂K�HÞ�þðYEþn̂K�HÞþ
Y�þYþ

0
B@

1
CA; ð3:20Þ

where Z� and Y � are the local impedance and admittance, respectively, and defined as

Z� ¼ 1

Y � ¼
ffiffiffiffiffiffi
l�
r

��r

s
:

For TMz wave, the numerical flux is given as (with details given in Appendix C)

hKðUð1Þ;�;Uð1Þ;þÞ ¼
� ZðnxHy�nyHxÞ�Ez½ ��þ ZðnxHy�nyHxÞþEz½ �þ

Z�þZþ

ny
YEz�ðnxHy�nyHxÞ½ ��þ YEzþðnxHy�nyHxÞ½ �þ

Y�þYþ

�nx
YEz�ðnxHy�nyHxÞ½ ��þ YEzþðnxHy�nyHxÞ½ �þ

Y�þYþ

0
BBB@

1
CCCA: ð3:21Þ

From the duality of the TEz and TMz cases, the numerical flux for the TEz case can be obtained by re-

placing Ez with Hz, replacing Hx by �Ex, and replacing Hy by �Ey , replacing Z by Y and replacing Y by Z in

Eq. (3.21),

hKðUð1Þ;�;Uð1Þ;þÞ ¼

Y ðnxEy�nyExÞþHz½ ��þ Y ðnxEy�nyExÞ�Hz½ �þ
Y�þYþ

�ny
ZHzþðnxEy�nyExÞ½ ��þ ZHz�ðnxEy�nyExÞ½ �þ

Z�þZþ

nx
ZHzþðnxEy�nyExÞ½ ��þ ZHz�ðnxEy�nyExÞ½ �þ

Z�þZþ

0
BBB@

1
CCCA: ð3:22Þ

where Uð1Þ ¼ ðlr;1Hz; �rEx; �rEyÞT.

3.2. Mapping between the standard reference element and the physical element

We start by assuming that the computational domain, X, is decomposed into quadrilateral and trian-

gular elements with straight or curved sides, as illustrated in Figs. 1 and 2.

The sides of the elements are not required be straight, but for most computational problems, the vast
majority of the elements will have straight sides. We shall name the coordinates in the standard element I as

n ¼ ðn; gÞ while the coordinates in the physical element D as x ¼ ðx; yÞ.
To relate operations in D to those in I, we need to construct a smooth and invertible mapping W : D ! I

that uniquely relates the physical elements and the standard reference elements. For curved triangles as in

Fig. 3, a blending function can be constructed for the mapping [5]. In the case of Fig. 1, the mapping is
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Fig. 1. Mapping between the quadrilateral D and the standard quadrilateral I.
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x ¼ WðnÞ ¼ ð1� nÞð1� gÞ
4

v1 þ
ð1þ nÞð1� gÞ

4
v2 þ

ð1þ nÞð1þ gÞ
4

v3 þ
ð1� nÞð1þ gÞ

4
v4; ð3:23Þ

where v1, v2, v3, and v4 are the coordinates of the vertexes V1, V2, V3, and V4, respectively.
Once the mapping WðnÞ has been established, we can use it to compute the curvilinear metric of the

transformation by
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ox

on

on

ox
¼ xn xg

yn yg

� �
nx ny
gx gy

� �
¼ 1 0

0 1

� �
: ð3:24Þ

With this new metric, the derivative of a function, u ¼ uðx; yÞ, is expressed

ou
ox

¼ ou
on

on
ox

þ ou
og

og
ox

:

And ou=oy can be similarly expressed.

Consider a smooth function, f ½D� 2 C½D� for which f ðxÞ : D ! R. The integration on the physical ele-

ment D is computed by the following formulation:Z
D
f ðxÞdx ¼

Z
I
Jf xðnÞð Þdn; ð3:25Þ

where J is the transformation Jacobian

J ¼ ox

on










:

In addition to the integration for the element D, the integration over the sides of the element D needs to

be computed, too. Once the mapping W has been established, the mappings between the sides of the

physical element and the sides of the reference element can also be derived. The integration on one of the

side, V1V2, of the physical element D is computed byZ
V1V2

f ðxÞds ¼
Z
VIVII

J1f xðnÞð Þds0; ð3:26Þ

where J1 is the Jacobian of the transformation relating the side V1V2 of the physical element D to the side
VIVII of the reference element I.

3.3. A multivariate polynomial basis on the standard reference element

First, we construct a set of basis functions on the standard reference element I, then using the mapping

W, we can obtain a set of basis functions on the physical element D. For example, we can define a set of

basis functions on the standard reference element I in Fig. 1 or 2:

P 2
n ¼ spanfnigj; i; jP 0; iþ j6 ng ¼ spanf/jg

N
j¼1;

where n signifies the maximum order of the polynomial and N ¼ ððnþ 2Þðnþ 1ÞÞ=2. And the corresponding

set of basis functions on the physical element D are

spanfniðx; yÞgjðx; yÞ; i; jP 0; iþ j6 ng;

where ðn; gÞ ¼ W�1ðx; yÞ.
A set of basis functions for the standard rectangle element can be chosen as

spanfLiðnÞLjðgÞ; i; jP 0; iþ j6 ng ¼ spanf/jg
N
j¼1;

where Lið�Þ is the Legendre polynomial of order i and N ¼ ððnþ 2Þðnþ 1ÞÞ=2. And the set of basis functions

on each element D is obtained by the mapping W. For triangular elements, if higher order basis (n > 7) is

desired, Dubinar orthogonal polynomial basis functions have been shown to provide well-conditioned mass

matrices (3.34) and yield exponential convergence for even discontinuous fields [16].
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3.4. Space discretization

With the function basis and the flux defined, we can formulate the DGM for Maxwell’s equations, Eqs.
(2.10) and (2.11). First, we assume that the electric field Ez, and magnetic field Hx and Hy are represented in

terms of the basis functions /jðxÞ;

Ez;N ðx; tÞ ¼
XN
j¼1

Ez;j/jðxÞ;
Hx;Nðx; tÞ ¼
XN
j¼1

Hx;j/jðxÞ;
Hy;N ðx; tÞ ¼
XN
j¼1

Hy;j/jðxÞ

within each general curvilinear element D. Here Ez;j and Hx;j, Hy;j are the time-dependent coefficients and

/jðxÞ is the jth basis function. And Uð2Þ is also projected to the function space expanded by the basis

functions,

Pz;s;N ðx; tÞ ¼
XN
j¼1

Pz;s;j/jðxÞ; s ¼ 1; 2; 3; 4;
Qt;N ðx; tÞ ¼
XN
j¼1

Qt;j/jðxÞ; t ¼ x; y:

We shall require that the equation, Eq. (3.3), be satisfied in the following way:

Z
D

oU
ð1Þ
N

ot
/iðxÞ

 
� S

ð1Þ
N /iðxÞ �A � r/iðxÞ

!
dxþ

Z
oD

hDðUð1Þ;�
N ;U

ð1Þ;þ
N Þ/iðxÞds ¼ 0; ð3:27Þ

where U
ð1Þ
N , hDðUð1Þ;�

N ;U
ð1Þ;þ
N Þ, and S

ð1Þ
N ¼ ðSEz

N ; SHx
N ; SHy

N ÞT refer to the approximate state vector, flux, and body

force, respectively. U
ð1Þ;�
N is the approximate field value local to the element D, and U

ð1Þ;þ
N is the approximate

field value from the neighbor element. hD ¼ ðhEz
D ; h

Hx
D ; hHy

D ÞT is the numerical flux. Sl
Nðx; tÞ ¼

PN
j¼1 S

l
j/jðxÞ,

l ¼ Ez;Hx;Hy , where Sl
j ; S

Hx
j ; SHy

j are the time-dependent coefficients.

Also, Eq. (3.4) is satisfied in the following way:

Z
D

oU
ð2Þ
N

ot
/iðxÞ

 
� S

ð2Þ
N /iðxÞ

!
dx ¼ 0; ð3:28Þ

where U
ð2Þ
N and S

ð2Þ
N refer to the approximate state vector, and body force, respectively.

Assuming that �r;1; lr; rx; ry ; s; r be constant on each element, Eqs. (3.27) and (3.28) can be written as

XN
j¼1

�r;1Mij
dEz;j

dt

�
þMx

ijHy;j �My
ijHx;j

�
þ
Z
oD

hEz
D ðU

ð1Þ;�
N ;U

ð1Þ;þ
N Þ/iðxÞds ¼

XN
j¼1

MijSEz
j ; ð3:29Þ
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where

SEz
j ¼ � r

h
þ �r;1ðrx þ ryÞ þ

�r;s � �r;1
s

i
Ez;j þ Pz;1;j þ Pz;2;j � Pz;3;j � Pz;4;j;
XN
j¼1

lrMij
dHx;j

dt

�
�My

ijEz;j

�
þ
Z
oD

hHx
D ðUð1Þ;�

N ;U
ð1Þ;þ
N Þ/iðxÞds ¼

XN
j¼1

MijSHx
j ; ð3:30Þ

where

SHx
j ¼ �lrðry � rxÞHx;j þ Qx;j;
XN
j¼1

lrMij
dHy;j

dt

�
þMx

ijEz;j

�
þ
Z
oD

hHy
D ðUð1Þ;�

N ;U
ð1Þ;þ
N Þ/iðxÞds ¼

XN
j¼1

MijS
Hy
j ; ð3:31Þ

where

SHy
j ¼ �lrðrx � ryÞHy;j þ Qy;j;
XN
j¼1

Mij
dPz;1;j
dt

�
þ �r;1rxryMijEz;j

�
¼ 0; ð3:32Þ
..

.

XN
j¼1

Mij
dQy;j

ot

�
þ ryMijQy;j � lrryðrx � ryÞMijHy;j

�
¼ 0: ð3:33Þ

Here we have introduced the local mass matrix

Mij ¼
Z
D

/iðxÞ/jðxÞdx ð3:34Þ

and two local stiffness matrices

Mx
ij ¼

Z
D

o/iðxÞ
ox

/jðxÞdx;
My
ij ¼

Z
D

o/iðxÞ
oy

/jðxÞdx:

After introducing the following notations:

Ez ¼ ðEz;1;Ez;2; . . . ;Ez;N ÞT; Hx ¼ ðHx;1;Hx;2; . . . ;Hx;N ÞT;
Hy ¼ ðHy;1;Hy;2; . . . ;Hy;N ÞT; / ¼ ð/1;/2; . . . ;/N Þ
T
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Eqs. (3.29)–(3.33) read explicitly

dEz

dt
¼ �ð�r;1MÞ�1MxHy þ ð�r;1MÞ�1MyHx � ð�r;1MÞ�1

Z
oD

hEz
D ðU

ð1Þ;�
N ;U

ð1Þ;þ
N Þ/ðxÞdsþ 1

�r;1
SEz
N ; ð3:35Þ

where

SEz
N ¼ ðSEz

1 ; SEz
2 ; . . . ; SEz

N ÞT;
dHx

dt
¼ ðlrMÞ�1MyEz � ðlrMÞ�1

Z
oD

hHx
D ðUð1Þ;�

N ;U
ð1Þ;þ
N Þ/ðxÞdsþ 1

lr

SHx
N ; ð3:36Þ

where

SHx
N ¼ ðSHx

1 ; SHx
2 ; . . . ; SHx

N ÞT;
dHy

dt
¼ �ðlrMÞ�1MxEz � ðlrMÞ�1

Z
oD

hHy
D ðUð1Þ;�

N ;U
ð1Þ;þ
N Þ/ðxÞdsþ 1

lr

S
Hy
N ; ð3:37Þ

where

S
Hy
N ¼ ðSHy

1 ; SHy

2 ; . . . ; SHy
N ÞT;
dPz;1;j
dt

¼ ��r;1rxryEz;j; ð3:38Þ
..

.

dQy;j

dt
¼ �ryQy;j þ lrryðrx � ryÞHy;j: ð3:39Þ

Eqs. (3.35)–(3.39) are ordinary equations and will be solved by Runge–Kutta methods.
4. Numerical results

4.1. Validation of the UPML boundary conditions for the DGM

To validate the accuracy of the proposed UPML boundary conditions, we consider a standard test

problem [14,13] to simulate an outgoing cylindrical wave generated by a hard source inside the compu-

tational domain. Fig. 3 shows two domains (XT � XB) on which both FDTD algorithm and the DGM will

be used and compared for the calculation of a TMz wave.
For a given numerical algorithm and a specific boundary treatment, we make two independent calcu-

lations, first we compute the scattering field, denoted by EB
z ; of the hard source on the bigger domain XB

with zero boundary condition on oXB (XB is chosen to be large enough so no reflection will come into XT

within the duration of the computation time). Second, we compute the solution ET
z on the smaller test

domain XT with the specific boundary condition imposed on oXT : Then, we define the difference at mesh

point ði; jÞ 2 XT between the two solutions as the reflection error caused by the specific boundary condition,

Dði; jÞ ¼ ET
z ði; jÞ � EB

z ði; jÞ: ð4:1Þ
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The second-order Yee’s finite difference scheme is used to test the accuracy of the Mur absorbing boundary

condition (ABC) while the DGM to test the accuracy of the UPML boundary treatment. The general

second-order absorbing boundary condition [14] at the left grid boundary of XT is given by

o2

oxot
U � p0

c
o2

ot2
U þ cp2

o2

oy2
U ¼ 0; ð4:2Þ

where U is the component of the electric field Ez, c is the velocity of the light in the free space. The choice of

the coefficients p0 and p2 in (4.2) produces various families of absorbing boundary conditions. With p0 ¼ 1
and p2 ¼ �0:5, (4.2) corresponds to the Mur ABC [13]. The ABCs at the other boundaries of XT are similar

to Eq. (4.2).

In the Yee’s scheme, a global reflected error is defined as

E ¼
X

ði;jÞ2XT

D2ði; jÞ; ð4:3Þ

which measures the total reflected error within the test domain at a given time step. For the DGM, the
global reflected error is defined by,

E ¼
X

Ki;j�XT

1

jKi;jj

Z
Ki;j

ðET
z � EB

z Þ
2
dxdy: ð4:4Þ

Similar mesh sizes are used for both Yee’s scheme and the DGM. The local reflection error was obtained

at the first row of the grid points away from the boundary y ¼ 0. Fig. 4 compares the local error due to the

second-order Mur ABC and 10-cell PML boundary treatment (with a reflection factor (4.17) Rð0Þ ¼ e�16).

The local error was scaled by the maximum absolute value of Ez. Fig. 4 shows that the local error due the

UPML is on the order of 10�9 �Mur ABC, i.e., 180 dB below the Mur ABC. Fig. 5 is the global error for
both the Mur ABC and the PML ABC, which shows that the global error due to the PML is on the order of

10�10 �Mur ABC, i.e., 100 dB below the Mur ABC.
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Fig. 4. Local Ez error at time-step n ¼ 100 for both the second-order Mur ABC and a 10-cell cubic graded UPML, plotted on a

logarithmic vertical scale.



10-30

10-25

10-20

10-15

10-10

10-5

100

 60  80  100  120  140  160  180  200

G
lo

ba
l e

rr
or

Time step

Mur ABC
UPML ABC

Fig. 5. Global error for both the second-order Mur ABC and a 10-cell cubic graded UPML, plotted as a function of time-step number

on a logarithmic vertical scale.

562 T. Lu et al. / Journal of Computational Physics 200 (2004) 549–580
4.2. Exponential convergence for TE and TM scattering of a dielectric cylinder

As high order basis functions can be used in the DGMs, we expect the convergence rate will be expo-

nential with respect to the order of basis functions. In this example, we will demonstrate such an expo-

nential convergence of the DGMs for the scattering of a dielectric cylinder.

We will consider both the TM and TE scattering, for the two-dimensional TM wave, we have the

Maxwell’s equations

�r
oEz

ot
¼ oHy

ox
� oHx

oy
; ð4:5Þ
lr

oHx

ot
¼ � oEz

oy
; ð4:6Þ
lr

oHy

ot
¼ oEz

ox
; ð4:7Þ

subject to boundary conditions between two regions with material parameters, �k and lk, for k ¼ 1,2, as

Eð1Þ
z ¼ Eð2Þ

z ; ð4:8Þ
n̂�Hð1Þ ¼ n̂�Hð2Þ: ð4:9Þ

Here Hk ¼ ðH ðkÞ
x ;H ðkÞ

y ; 0Þ, k ¼ 1,2 and n̂ ¼ ðnx; ny ; 0Þ represents a unit normal to the material interface.

Similar equations can be written for the TE case and are omitted here.

We assume that the cylinder with radius r0 ¼ 0:6, �2 ¼ 2:25, l2 ¼ 2 embedded in the free space is illu-

minated by a TM time-harmonic incident plane wave of the form

Ei
z ¼ cosðk0x� xtÞ; H i

y ¼ � cosðk0x� xtÞ; ð4:10Þ

where the propagation constant for homogeneous, isotropic free-space medium k0 ¼ x
ffiffiffiffiffiffiffiffiffi
l0�0

p
.
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We will use the scattering wave formulation

�r
oEs

z

ot
¼

oH s
y

ox
� oH s

x

oy
� ð�r � �irÞ

oEi
z

ot
; ð4:11Þ
lr

oH s
x

ot
¼ � oEs

z

oy
� ðlr � li

rÞ
oH i

x

ot
; ð4:12Þ
lr

oH s
y

ot
¼ oEs

z

ox
� ðlr � li

rÞ
oH i

y

ot
: ð4:13Þ

For the TE excitation, we choose the cylinder’s parameters to be �2 ¼ 2 and l2 ¼ 1:96. The incident plane
wave is set to be

H i
z ¼ cosðk0x� xtÞ; Ei

y ¼ cosðk0x� xtÞ: ð4:14Þ
4.2.1. Exact boundary conditions

With the angular frequency x ¼ 2p, we first use the exact series solution [18] as the boundary conditions

and initial conditions. Temporal integration of the semi-discretized approximation given in Eqs. (3.35)–
(3.39) is done using a ðnþ 1Þth order (n is the order of the polynomial of the basis functions) or fourth-

order Runge–Kutta method if nP 3. The time step used in the computation is taken heuristically to be

Dt ¼ CFLminX
ffiffiffiffiffiffiffiffi
�rlr

p
h; ð4:15Þ

with
ffiffiffiffiffiffiffiffi
�rlr

p
being the modified local speed of light due to materials, h is the minimum mesh size (the

minimum length of the sides), and CFL typically takes values of 1=ð2nþ 1Þ. More rigorous criteria for the

selection of the time steps for unstructured meshes can be found in [23].

We can see the exponential convergence with increasing order of the approximation n in Fig. 6 for a fixed

mesh.

4.2.2. PML boundary treatment

Next we will show the effect of PML boundary treatment on the accuracy of the DGM. The finite el-
ement triangularization is shown in Fig. 7. The UPML losses rxðxÞ is set to be polynomial profile [13],

rxðxÞ ¼ ðl=dÞmrx;max; ð4:16Þ

where l is the distance from the interface between the PML and the physical solution domain, and d is the

thickness of the PML. The definition of ryðyÞ is similar. Eq. (4.16) increases the value of the PMLs rx

from zero at l ¼ 0, the surface of the PML, to rx;max at l ¼ d, the PEC outer boundary. The reflection
factor is

RðhÞ ¼ e�2grx;maxd�r;1 cos h=ðmþ1Þ; ð4:17Þ

where g is the PMLs characteristic wave impedance and h is the incident angle. For polynomial grading, the

PML parameters can be readily determined for a given error estimate. For example, let m, d, and the
desired reflection error Rð0Þ be known, rx;max can be computed as

rx;max ¼ �ðmþ 1Þ ln Rð0Þð Þ
2gd�

: ð4:18Þ

r;1
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Again, we see the exponential convergence with increasing order of the approximation n in a semi-log plot

Fig. 8 for a different fixed mesh with a 10 cell PML region (with a reflection factor (4.17) Rð0Þ ¼ e�16).

However, it should be noted that once the reflection errors from the PML layers dominate the discreti-
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zation errors of the DGM, the exponential convergence will not continue. Meanwhile, Figs. 9–11

show the contour of the TM scattering wave Hx, Hy and Ez using the fourth order of approximation,

respectively.
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Fig. 9. The contour of the scattered Ez with the order of approximation, n ¼ 4.
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Remark. We would like to discuss the divergence free property of the proposed DGM, the method does not

impose the divergence free condition explicitly in the design of the method. However, our numerical results

have shown that the magnitude for the divergence of the magnetic field for TM case or the electric field for

TE case remains at the level of the initial data. Fig. 12 shows the exponential convergence of zero diver-
gence of the magnetic field on a semi-log plot.

There has some recent work on using divergence free basis function in each individual elements, thus

eliminating one of the sources of the divergence error [22].
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4.3. Scattering by a dispersive square cylinder

To demonstrate the proposed unified formulation of the DGM for dispersive and PML regions, we will
compute the scattered field from a dispersive square cylinder illustrated in Fig. 13. All units are non-

dimensionalized in this example. We will consider two types of dispersive media: Medium I: �r;1 ¼ 4,

�r;s ¼ 12, r ¼ 0:002 S/m, s ¼ 2:0� 10�10, Medium II: �r;1 ¼ 9, �r;s ¼ 16, r ¼ 0:004 S/m, s ¼ 6:4� 10�11 The

cylinder is of Debye Medium II and the background is a medium of Medium I [19]. The geometry of the

cylinder and the locations of the source and receiver are shown in Fig. 13. The source locates at ð0:0; 0:72Þ
in the center of a rectangular element, and the receiver locates at ð0:0; 0:92Þ. The time step Dt ¼ 0:002. The
triangle mesh is generated with the shortest side of the resulting mesh being 0.028. The PML region has a

width of 10 cells.
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We select the source to be an electric current source in z-direction (Jz), which is the following Gaussian

pulse:

JzðtÞ ¼ exp

 
� t � t0

tdecay

� �2
!
; ð4:19Þ

where t0 ¼ 0:54, tdecay ¼ t0=4, and fc ¼ 5=3.
Fig. 14 shows the incident field Ei

z as a function of time in the absence of the square cylinder. When the

dispersive cylinder is present, we calculate the total field. By subtracting the incident field from the total

field, we obtain in Fig. 15 the scattered field Es
z as a function of time.
5. Conclusion

We have presented a unified formulation of DGMs for Maxwell’s equations in a linear dispersive and

lossy Debye materials and in the artificial PML regions. Numerical results demonstrate the excellent

performance of the PML layer with the DGM, and also the exponential convergence of the DGM even for

discontinuous solutions provided that the errors from the PML layers do not dominate the errors from the
discontinuous Galerkin discretization.
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Appendix A. Unified formulation of Maxwell’s equations in dispersive media and UPML region

Consider an inhomogeneous, conductive and electrically dispersive medium with magnetic relative

permeability lr and conductivity r. A general time-harmonic form of Maxwell’s equations in a dispersive

medium or a UPML can be written as

r� �H ¼ jx�0 �r

�
þ r
jx�0

�
����E; ðA:1Þ
r� �E ¼ �jxl0lr
��l �H; ðA:2Þ

where

��� ¼ ��l ¼

sy sz
sx

0 0
0 sxsz

sy
0

0 0
sxsy
sz

2
64

3
75 ðA:3Þ

and

si ¼ 1þ ri

jx�0
; i ¼ x; y; z: ðA:4Þ
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�0 and l0 are the permittivity and permeability of free space, respectively, and �r is the relative permittivity

of the dispersive media. ri ¼ 0 corresponds to the original physical dispersive medium. We consider two

important classes of material dispersions: the Debye relaxation and the Lorentzian resonance. These two
cases are now defined using the expðjxtÞ time convention for phasor quantities (cf. [13, pp. 374–375]). For a

Debye medium having P poles, we have

�rðxÞ ¼ �r;1 þ
XP
p¼1

�r;s;p � �r;1;p

1þ jxsp
; ðA:5Þ

where �r;s;p is the static zero-frequency relative permittivity, �r;1 is the relative permittivity at infinite fre-
quency due to the pth Debye pole, and sp is the pth pole relaxation time.

For a Lorentz medium having P pole pairs, we have

�rðxÞ ¼ �r;1 þ
XP
p¼1

ð�r;s;p � �r;1;pÞx2
p

x2
p þ 2jxdp � x2

; ðA:6Þ

where xp is the frequency of the pth Lorentz pole pair (the undamped resonant frequency of the medium)

and dp is the damping coefficient.
In this paper, we will give the formulation for the Debye medium. Let the relative permittivity with a

single pole be

�rðxÞ ¼ �r;1 þ �r;s � �r;1
1þ jxs

: ðA:7Þ

For simplicity, we just consider the 2D TMz case (sz ¼ 1), the Maxwell’s equations for TMz wave for the

Debye medium having a single pole can be written as

o �Hy

ox
� o �Hx

oy
¼ jx�0 �r;1

�
þ �r;s � �r;1

1þ jxs
þ r
jx�0

�
sxsy �Ez; ðA:8Þ
o�Ez

oy
¼ �jxl0lr

sy
sx

�Hx; ðA:9Þ
� o�Ez

ox
¼ �jxl0lr

sx
sy

�Hy : ðA:10Þ

Eq. (A.8) can be written as

o �Hy

ox
� o �Hx

oy
¼ jx�0�r;1�Ez þ r�Ez þ �Jz;1ðxÞ þ �Jz;2ðxÞ þ �Jz;3ðxÞ þ �Jz;4ðxÞ; ðA:11Þ

where

�Jz;1ðxÞ ¼ jx�0�r;1ðsxsy � 1Þ�Ez; ðA:12Þ
�Jz;2ðxÞ ¼ jx�0
�r;s � �r;1
1þ jxs

�Ez; ðA:13Þ
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�Jz;3ðxÞ ¼ jx�0
�r;s � �r;1
1þ jxs

ðsxsy � 1Þ�Ez ¼ ðsxsy � 1Þ�Jz;2ðxÞ ¼
�r;s � �r;1

�r;1ð1þ jxsÞ
�Jz;1ðxÞ; ðA:14Þ
�Jz;4ðxÞ ¼ rðsxsy � 1Þ�Ez ¼
r

jx�0�r;1
�Jz;1ðxÞ: ðA:15Þ

After substituting sx and sy from Eq. (A.4), we have

�Jz;1ðxÞ ¼ jx�0�r;1 1

��
þ rx

jx�0

�
1

�
þ ry

jx�0

�
� 1

�
�Ez ¼ jx�0�r;1

rx þ ry

jx�0

 
þ rxry

ðjx�0Þ2

!
�Ez

¼ �r;1ðrx þ ryÞ�Ez þ
�r;1
jx�0

rxry
�Ez; ðA:16Þ
�Jz;2ðxÞ ¼ jx�0
�r;s � �r;1
1þ jxs

�Ez; ðA:17Þ
�Jz;3ðxÞ ¼
�r;s � �r;1

�r;1ð1þ jxsÞ
�Jz;1; ðA:18Þ
�Jz;4ðxÞ ¼
r

jx�0�r;1
�Jz;1: ðA:19Þ

Now considering Eq. (A.11), we apply the inverse Fourier transform using the identity

jxf ðxÞ ! ðo=otÞf ðtÞ. This yields an equivalent equation of time-domain differential equation for Eq.

(A.11)

oHy

ox
� oHx

oy
¼ �0�r;1

oEz

ot
þ rEz þ Jz;1ðtÞ þ Jz;2ðtÞ þ Jz;3ðtÞ þ Jz;4ðtÞ: ðA:20Þ

Next we will derive dynamic equations for (A.16)–(A.19). The way to obtain a dynamic equation for Jz;1
from Eq. (A.16) is to first multiply both sides of this equation by (jx), which gives

jx�Jz;1 ¼ jx�r;1ðrx þ ryÞ�Ez þ
�r;1
�0

rxry
�Ez: ðA:21Þ

Exploiting the differentiation theorem for the Fourier transform, we perform an inverse Fourier transform

of each term in Eq. (A.21)

oJz;1ðtÞ
ot

¼ �r;1ðrx þ ryÞ
oEz

ot
þ �r;1

�0
rxryEz: ðA:22Þ

To obtain the dynamic equation for Jz;2 from Eq. (A.17), we again multiply both sides of this equation by

(1þ jxs),

�Jz;2 þ jxs�Jz;2 ¼ jx�0ð�r;s � �r;1Þ�Ez: ðA:23Þ

Similarly, using the inverse Fourier transform, we get

Jz;2 þ s
oJz;2
ot

¼ �0ð�r;s � �r;1Þ
oEz

ot
; ðA:24Þ

and by the same token, from (A.18) and (A.19) we have
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Jz;3 þ s
oJz;3
ot

¼ �r;s � �r;1
�r;1

Jz;1; ðA:25Þ
oJz;4
ot

¼ r
�0�r;1

Jz;1: ðA:26Þ

(A.22), (A.24)–(A.26) are the time domain differential equations for all Jzs.
Next, we will further simplify the differential equations for the polarization currents Jzs so that they will

become simply ordinary differential equations as shown in (2.8).

Considering Eq. (A.22), introduce a new parameter

Pz;1 ¼ �Jz;1 þ �r;1ðrx þ ryÞEz: ðA:27Þ

Then Eq. (A.22) can be written as

oPz;1
ot

¼ � �r;1
�0

rxryEz: ðA:28Þ

Similarly for Eq. (A.24), introducing a new parameter

Pz;2 ¼ �Jz;2 þ
�0ð�r;s � �r;1Þ

s
Ez; ðA:29Þ

we have

oPz;2
ot

¼ 1

s
Jz;2: ðA:30Þ

From Eqs. (A.27) and (A.29), we can get

Jz;1 ¼ �Pz;1 þ �r;1ðrx þ ryÞEz ðA:31Þ

and

Jz;2 ¼ �Pz;2 þ
�0ð�r;s � �r;1Þ

s
Ez: ðA:32Þ

Now, after substituting for Jz;1 and Jz;2 from Eqs. (A.31) and (A.32) into Eq. (A.20), we have

oHy

ox
� oHx

oy
¼ �0�r;1

oEz

ot
þ rEz � Pz;1 þ �r;1ðrx þ ryÞEz � Pz;2 þ

�0ð�r;s � �r;1Þ
s

Ez þ Jz;3ðtÞ þ Jz;4ðtÞ

¼ �0�r;1
oEz

ot
þ r

�
þ �r;1ðrx þ ryÞ þ

�0ð�r;s � �r;1Þ
s

�
Ez � Pz;1 � Pz;2 þ Jz;3 þ Jz;4: ðA:33Þ

Next considering Eq. (A.30), after substituting for Jz;2 from Eq. (A.32), we have

oPz;2 ¼ � 1
Pz;2 þ

�0ð�r;s � �r;1Þ
2

Ez: ðA:34Þ

ot s s
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Similarly for Eq. (A.25), after substituting for Jz;1 from Eq. (A.31), we have

oJz;3
ot

¼ � 1

s
Jz;3 þ

�r;s � �r;1
�r;1s

�
� Pz;1 þ �r;1ðrx þ ryÞEz

�
¼ � 1

s
Jz;3 �

�r;s � �r;1
�r;1s

Pz;1 þ
ð�r;s � �r;1Þðrx þ ryÞ

s
Ez: ðA:35Þ

Finally, for Eq. (A.26), after substituting for Jz;1 from Eq. (A.31), we have

oJz;4
ot

¼ � r
�0�r;1

Pz;1 þ
rðrx þ ryÞ

�0
Ez: ðA:36Þ

Similar operations can be done to Faraday’s Law equations (A.9) and (A.10), and we have the following

equations:

oEz

oy
¼ �l0lr

oHx

ot
� l0lr

ry � rx

�0
Hx þ Qx; ðA:37Þ
� oEz

ox
¼ �l0lr

oHy

ot
� l0lr

rx � ry

�0
Hy þ Qy ; ðA:38Þ
oQx

ot
¼ � rx

�0
Qx þ

l0lrrxðry � rxÞ
�20

Hx; ðA:39Þ
oQy

ot
¼ � ry

�0
Qy þ

l0lrryðrx � ryÞ
�20

Hy : ðA:40Þ

For consistency of notations, we let Pz;3 ¼ Jz;3 and Pz;4 ¼ Jz;4, then from Eqs. (A.33), (A.37), (A.38), (A.28),

(A.34), (A.35), (A.36), (A.39) and (A.40), we get a new set of equations for Ez, Hx, Hy , Pz;1, Pz;2, Pz;3, Pz;4, Qx,

Qy as follows:

�0�r;1
oEz

ot
¼ oHy

ox
� oHx

oy
� r

�
þ �r;1ðrx þ ryÞ þ

�0ð�r;s � �r;1Þ
s

�
Ez þ Pz;1 þ Pz;2 � Pz;3 � Pz;4; ðA:41Þ
l0lr

oHx

ot
¼ � oEz

oy
� l0lr

ry � rx

�0
Hx þ Qx; ðA:42Þ
l0lr

oHy

ot
¼ oEz

ox
� l0lr

rx � ry

�0
Hy þ Qy ; ðA:43Þ
oPz;1
ot

¼ � �r;1
�0

rxryEz; ðA:44Þ
oPz;2
ot

¼ � 1

s
Pz;2 þ

ð�r;s � �r;1Þ
s2

Ez; ðA:45Þ
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oPz;3
ot

¼ � 1

s
Pz;3 �

�r;s � �r;1
�r;1s

Pz;1 þ
ð�r;s � �r;1Þðrx þ ryÞ

s
Ez; ðA:46Þ
oPz;4
ot

¼ � r
�0�r;1

Pz;1 þ
rðrx þ ryÞ

�0
Ez; ðA:47Þ
oQx

ot
¼ � rx

�0
Qx þ

l0lrrxðry � rxÞ
�20

Hx; ðA:48Þ
oQy

ot
¼ � ry

�0
Qy þ

l0lrryðrx � ryÞ
�20

Hy : ðA:49Þ

Notice that Eqs. (A.44)–(A.49) contain no spatial derivatives and hence they are simply o.d.e.’s for Pz;1, Pz;2,
Pz;3, Pz;4, Qx, Qy . Abarbanel and Gottlieb [12] pointed that the system using split-field PML terminating the
computational domain was only weakly well-posed for the initial value problem. In contrast, the system

(A.41)–(A.49), after dropping the undifferentiated terms, becomes the original 3� 3 Maxwell system which

is symmetric hyperbolic and therefore strongly well-posed.

It is straightforward to generalize this method for the medium having many Debye poles or Lorentz

pole-pairs or for three-dimensional cases.
Appendix B. Non-dimensionalization of Maxwell’s equations

Maxwell’s equations are given as

�0�r;1
o~Ez

o~t
¼ o ~Hy

o~x
� o ~Hx

o~y
� ~r

�
þ �r;1ð~rx þ ~ryÞ þ

�0ð�r;s � �r;1Þ
~s

�
~Ez þ ~Pz;1 þ ~Pz;2 � ~Pz;3 � ~Pz;4 ðB:1Þ
l0lr

o ~Hx

o~t
¼ � o~Ez

o~y
� l0lr

~ry � ~rx

�0
~Hx þ ~Qx; ðB:2Þ
l0lr

o ~Hy

o~t
¼ o~Ez

o~x
� l0lr

~rx � ~ry

�0
~Hy þ ~Qy ; ðB:3Þ
o~Pz;1
o~t

¼ � �r;1
�0

~rx~ry
~Ez; ðB:4Þ
o~Pz;2
o~t

¼ � 1

~s
~Pz;2 þ

�0ð�r;s � �r;1Þ
~s2

~Ez; ðB:5Þ
o~Pz;3
o~t

¼ � 1

~s
~Pz;3 �

�r;s � �r;1
�r;1~s

~Pz;1 þ
ð�r;s � �r;1Þð~rx þ ~ryÞ

~s
~Ez; ðB:6Þ
o~Pz;4
o~t

¼ � ~r
�0�r;1

~Pz;1 þ
~rð~rx þ ~ryÞ

�0
~Ez; ðB:7Þ
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o~Qx

o~t
¼ � ~rx

�0
~Qx þ

l0lr~rxð~ry � ~rxÞ
�20

~Hx; ðB:8Þ
o~Qy

o~t
¼ � ~ry

�0
~Qy þ

l0lr~ryð~rx � ~ryÞ
�20

~Hy ; ðB:9Þ

where �0 and l0 are the free space permittivity and permeability. The speed of light in free space is given by

c ¼ ð�0l0Þ
�1=2

. The characteristic impedance of free space is given by Z ¼ ðl0=�0Þ
1=2

.

We non-dimensionalize the above set as follows:

x ¼ ~x=L; y ¼ ~y=L; t ¼ c~t=L; ðB:10Þ
Hx ¼ Z ~Hx; Hy ¼ Z ~Hy ; Ez ¼ ~Ez; ðB:11Þ
Pz;i ¼ LZ~Pz;i; i ¼ 1; 2; 3; 4; ðB:12Þ
Qx ¼ L~Qx; Qy ¼ L~Qy ; ðB:13Þ
r ¼ LZ~r; rx ¼ LZ~rx; ry ¼ LZ~ry ; ðB:14Þ
s ¼ c~s=L; ðB:15Þ
L is a reference length associated with a given problem.

Thus, the non-dimensionalized form of Eqs. (B.1)–(B.9) is:

�r;1
oEz

ot
¼ oHy

ox
� oHx

oy
� r
h

þ �r;1ðrx þ ryÞ þ
�r;s � �r;1

s

i
Ez þ Pz;1 þ Pz;2 � Pz;3 � Pz;4; ðB:16Þ

lr

oHx

ot
¼ � oEz

oy
� lrðry � rxÞHx þ Qx; ðB:17Þ
lr

oHy

ot
¼ oEz

ox
� lrðrx � ryÞHy þ Qy ; ðB:18Þ
oPz;1
ot

¼ ��r;1rxryEz; ðB:19Þ
oPz;2
ot

¼ � 1

s
Pz;2 þ

�r;s � �r;1
s2

Ez; ðB:20Þ
oPz;3
ot

¼ � 1

s
Pz;3 �

�r;s � �r;1
�r;1s

Pz;1 þ
ð�r;s � �r;1Þðrx þ ryÞ

s
Ez; ðB:21Þ
oPz;4
ot

¼ � r
�r;1

Pz;1 þ rðrx þ ryÞEz; ðB:22Þ
oQx

ot
¼ �rxQx þ lrrxðry � rxÞHx; ðB:23Þ



576 T. Lu et al. / Journal of Computational Physics 200 (2004) 549–580
oQy

ot
¼ �ryQy þ lrryðrx � ryÞHy : ðB:24Þ
Appendix C. Riemann problem for dispersive media and the numerical flux equation (3.21)

The numerical flux equation (3.21) can be obtained by solving a one-dimensional Riemann problem with

initial data indicated in Fig. 16. Mohammadian et al. [17] has obtained the numerical fluxes to the problem

without source terms. Here, we will derive the fluxes to the case with source terms.

The weak solution [20,21] ~U ¼ ð~Uð1Þ; ~Uð1ÞÞT to (3.12) and (3.13) satisfies for all functions

wð1Þ 2 C1
0ðR� ½0;þ1ÞÞ3 and wð2Þ 2 C1

0ðR� ½0;þ1ÞÞ6Z 1

0

Z
R

~Uð1Þ � ow
ð1Þ

ot

(
þrwð1Þ � ðA~Uð1ÞÞ

)
dfdt þ

Z
R

~Uð1Þðf; 0Þ � wð1Þðf; 0Þdfþ
Z 1

0

Z
R

~Sð1Þ � wð1Þ dfdt ¼ 0;

ðC:1Þ
Z 1

0

Z
R

~Uð2Þ � ow
ð2Þ

ot
dfdt þ

Z
R

~Uð2Þðf; 0Þ � wð2Þðf; 0Þdfþ
Z 1

0

Z
R

~Sð2Þ � wð2Þ dfdt ¼ 0: ðC:2Þ

And it can be proved [20] that (C.1) and (C.2) imply that a piecewise C1 function ~U is a solution of (3.12)–

(3.14) if and only if the following two conditions are satisfied:

(i) ~U is a classical solution of R� ½0;þ1Þ in the domains where ~U is C1;

(ii) ~U satisfies the Rankine–Hugoniot condition along a line of discontinuity with a speed s

ð~Uð1Þ;� � ~Uð1Þ;þÞs ¼ A� � n̂~Uð1Þ;� �Aþ � n̂~Uð1Þ;þ; ðC:3Þ

where þ and � denote the limits on each side of the line of discontinuity.

If there are no source terms, Sð1Þ and Sð2Þ, piecewise constant solution in domain f < 0 and domain f > 0

can be obtained. Since A � n̂ is a constant matrix in both domains, we can construct the solution using the

eigen-decomposition method [21]. It should be noted that an extra boundary condition is needed at f ¼ 0

for either domain, and these two boundary conditions are related by the Rankine–Hugoniot condition at

f ¼ 0, i.e., A� � n̂~Uð1Þ;� �Aþ � n̂~Uð1Þ;�� ¼ 0. (The meaning of � and �� are indicated in Fig. 16). With the
source terms, the solution to this Riemann problem will not be piecewise constant anymore. But the lin-
-c-       

t

ζ =c
+

t 

* **

+

ζ

tζ = 

-

Fig. 16. Solution of the Riemann problem.
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earity of the problem implies that the characteristics are still independent of the solution ~U, and, thus,

straight lines. However, we need to integrate along the characteristics to obtain the solution. Applying

Rankine–Hugoniot conditions at the lines of discontinuity, we will get the solution in the whole domain
ð�1;þ1Þ � ½0;þ1Þ.

As ~Uð2Þ satisfies ordinary equations, and no spatial numerical fluxes are needed. So we just concentrate

on solving ~Uð1Þ. For simplicity, let u denote ~Uð1Þ and A denote A � n̂. Then, the one dimensional Riemann

problem becomes

o

ot
uþ o

of
ðAuÞ ¼ ~Sð1Þ; ðC:4Þ
uðf; 0Þ ¼ u�; f < 0;
uþ; f > 0;

�
ðC:5Þ

where

A ¼ A�; f < 0;
Aþ; f > 0;

�
ðC:6Þ

and

A� ¼
0 ny=l�

r �nx=l�
r

ny=��r;1 0 0

�nx=��r;1 0 0

0
@

1
A: ðC:7Þ

A� has three different eigenvalues

k�1 ¼ �c�; k�2 ¼ 0; k�3 ¼ c� ðC:8Þ

where c� ¼ ð��r;1l�
r Þ

�1=2
is the speed of light in the medium. A� is diagonalizable with real eigenvectors,

namely

A� ¼ R�K�ðR�Þ�1 ðC:9Þ

where K� ¼ diagðk�1 ; k
�
2 ; k

�
3 Þ is a diagonal matrix composed of A�s eigenvalues, respectively. And

R� ¼ ðr�1 jr�2 jr�3 Þ is the matrix of right eigenvectors, and ðR�Þ�1
is R�s inverse matrix

R� ¼
1 0 1

�nyZ� nx nyZ�

nxZ� ny �nxZ�

0
@

1
A; ðR�Þ�1 ¼ 1

2

1 �nyY � nxY �

0 2nx 2ny
1 nyY � �nxY �

0
@

1
A; ðC:10Þ

where Z� ¼ 1=Y � ¼ ðl�=��Þ1=2.
We define the new parameters v,

v ¼ ðR�Þ�1
u if f < 0;

ðRþÞ�1
u if f > 0:

�
ðC:11Þ

In each of the region f < 0 or f > 0 along the pth characteristic, we have

ovp
ot

þ kp
ovp
of

¼ Sp; p ¼ 1; 2; 3: ðC:12Þ

where Sp is the pth component of the source term R�1~Sð1Þ, and
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kp ¼
k�p if f < 0;

kþp if f > 0:

�
ðC:13Þ

The solution can be explicitly given by

vpðf; tÞ ¼ vpðf� kpt; 0Þ þ
Z t

0

Sp d~t ðC:14Þ

where the integration is done along the characteristic ~f� kp~t ¼ f� kpt with the initial value of v given as

vðf; 0Þ ¼ v�; f < 0

vþ; f > 0:

�
¼ ðR�Þ�1

u�; f < 0

ðRþÞ�1
uþ; f > 0:

�
ðC:15Þ

From the definition of the numerical flux (3.18), we just need to compute the limit value
limt!0þ

~Uð1Þð0�; tÞ or limt!0þ
~Uð1Þð0þ; tÞ.

Now consider a point E in Fig. 17. We can integrate along the line f� c�t ¼ fE � c�tE to get v3ðf�E ; tEÞ,
and the line fþ cþt ¼ fE þ cþtE to get v1ðfþE ; tEÞ. (Note that fE ¼ 0.)

From v3ð0�; tEÞ, v1ð0þ; tEÞ and the Rankine–Hugoniot condition at the characteristic f ¼ 0

Aþuð0þ; tEÞ � A�uð0�; tEÞ ¼ 0; ðC:16Þ

we can get the unknown values v1ð0�; tEÞ and v3ð0þ; tEÞ.
Using Eqs. (C.9) and (C.11), Eq. (C.16) can be rewritten as

�c�v1ð0�; tEÞr�1 þ c�v3ð0�; tEÞr�3 ¼ �cþv1ð0þ; tEÞrþ1 þ cþv3ð0þ; tEÞrþ3 ðC:17Þ

or

�c� c�

c�nyZ� c�nyZ�

�c�nxZ� �c�nxZ�

0
@

1
A v1ð0�; tEÞ

v3ð0�; tEÞ

� �
¼

�cþ cþ

cþnyZþ cþnyZþ

�cþnxZþ �cþnxZþ

0
@

1
A v1ð0þ; tEÞ

v3ð0þ; tEÞ

� �
: ðC:18Þ

From Eq. (C.18), we can solve

v1ð0�; tEÞ
v3ð0þ; tEÞ

� �
¼ � Z��Zþ

Z�þZþ v3ð0�; tEÞ þ 2Zþ

Z�þZþ
cþ

c� v1ð0þ; tEÞ
Z��Zþ

Z�þZþ v1ð0þ; tEÞ þ 2Z�

Z�þZþ
c�

cþ v3ð0�; tEÞ

 !
: ðC:19Þ
I

IIIII

A

B

ζ

C

D
E

IV

ζ
B

ζ
E E

t++c
A

ζ –c–tA

Fig. 17. Construction of solution to Riemann problem at (f; t).
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From Eqs. (C.14) and (C.15), we have

v1ð0þ; tEÞ ¼ vþ1 þ
Z tE

0

S1 dt; v3ð0�; tEÞ ¼ v�3 þ
Z tE

0

S3 dt: ðC:20Þ

Let tE ! 0þ, we have

lim
tE!0þ

v1ð0þ; tEÞ ¼ vþ1 ; lim
tE!0þ

v3ð0�; tEÞ ¼ v�3 : ðC:21Þ

From Eq. (C.16) and the definition of the numerical flux (3.18), we can get the numerical flux

hðu�; uþÞ ¼ lim
tE!0þ

Aþu�ð0þ; tEÞ ¼ lim
tE!0þ

ð�cþv1ð0þ; tEÞrþ1 þ cþv3ð0þ; tEÞrþ3 Þ: ðC:22Þ

Substituting v3ð0þ; tEÞ in Eq. (C.19) into the Eq. (C.22) gives

hðu�; uþÞ ¼ lim
tE!0þ

�
� cþv1ð0þ; tEÞrþ1 þ cþ

Z� � Zþ

Z� þ Zþ v1ð0þ; tEÞrþ3 þ c�
2Z�

Z� þ Zþ v3ð0�; tEÞrþ3
�
: ðC:23Þ

Using Eqs. (C.21) and (C.23), we get

hðu�; uþÞ ¼ �cþvþ1 r
þ
1 þ cþ

Z� � Zþ

Z� þ Zþ vþ1 r
þ
3 þ c�

2Z�

Z� þ Zþ v�3 r
þ
3 : ðC:24Þ

Substituting vþ1 and v�3 in Eq. (C.15) and rþ1 and rþ3 in Eq. (C.10) into Eq. (C.24) gives

hðu�; uþÞ ¼
� ZðnxHy�nyHxÞ�Ez½ ��þ ZðnxHy�nyHxÞþEz½ �þ

Z�þZþ

ny
YEz�ðnxHy�nyHxÞ½ ��þ YEzþðnxHy�nyHxÞ½ �þ

Y�þYþ

�nx
YEz�ðnxHy�nyHxÞ½ ��þ YEzþðnxHy�nyHxÞ½ �þ

Y�þYþ

0
BBB@

1
CCCA; ðC:25Þ

which proves Eq. (3.21). And a similar method applying to the three dimensional Maxwell’s equations gives

Eq. (3.20).
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